DOI QR코드

DOI QR Code

미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과

MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma

  • 남제현 (부산대학교 자연과학대학 생명과학과) ;
  • 김은경 (부산대학교 자연과학대학 생명과학과) ;
  • 김진영 (부산대학교 자연과학대학 생명과학과) ;
  • 정다움 (부산대학교 자연과학대학 생명과학과) ;
  • 김동욱 (부산대학교 자연과학대학 생명과학과) ;
  • 곽보미 (부산대학교 자연과학대학 생명과학과) ;
  • 김상우 (부산대학교 자연과학대학 생명과학과)
  • Nam, Jehyun (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Eunkyung (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Jinyoung (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Jeong, Dawoom (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Donguk (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kwak, Bomi (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Sang-Woo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • 투고 : 2016.12.14
  • 심사 : 2017.01.04
  • 발행 : 2017.02.28

초록

미만성 거대 B 세포 림프종(DLBCL)은 비호지킨 림프종에서 가장 흔한 형태이다. DLBCL에서 약물치료에 대한 연구가 많은 진전을 보였지만, 아직 많은 환자의 경우 DLBCL로 인한 사망률이 상당하다. 따라서 DLBCL에 대한 이해와 새로운 표적 치료제의 개발이 필요하다. PDE (인산이에스테르 가수분해효소)4B는 최근 시행된 유전자 발현 프로파일링에서 약제내성을 가지는 DLBCL에서 과발현 되는 유전자로 밝혀졌다. PDE4B의 주된 역할은 이차전달자인 고리형 AMP (cylclic AMP, cAMP)를 5'AMP로의 가수분해를 촉진시켜 cAMP를 비활성화 시키는 것이다. cAMP는 B 세포에서 세포증식 저해와 세포사멸을 유도하고 PDE4B는 B 세포에서 이러한 cAMP의 기능을 소멸시키는 것으로 알려져 있다. 그러나 PDE4B의 과발현이 어떤 기작에 의한 것인지는 연구가 미비하다. 본 논문에서는 비정상적으로 발현된 마이크로 RNA (microRNA, miRNA)가 PDE4B의 과발현에 관련되어 있을 것이라는 가정하에 실험을 진행하였다. PDE4B 3'-UTR에는 세 개의 miR-23b 예상 결합부위가 존재하고, 이는 luciferase reporter assay를 통해서 확인하였다. 흥미롭게도, miR-23b 결합 부위들은 인간에서부터 도마뱀에 이르기까지 진화적으로 보존되어 있었고, 이는 세포 생리학적 측면에서 PDE4B-miR-23b 사이의 상호작용이 중요한 역할을 수행함을 암시하고 있다. miR-23b의 과발현은 PDE4B의 mRNA 발현을 감소시키고 세포내의 cAMP의 농도를 증가시켰다. 뿐만 아니라, miR-23b의 발현은 아데닐산고리화효소(adenylyl cyclase)의 활성약제인 forskolin이 처리된 경우에만 DLBCL 세포들의 증식과 생존을 억제하였다. 이는 miR-23b는 PDE4B 발현을 감소시킴으로써 세포증식과 생존을 조절함을 보여주는 것이다. 이를 통해 생각해 볼 때, miR-23b는 PDE4B를 억제함으로써 DLBCL에서 나타나는 항암제 내성을 극복할 수 있고, 따라서 miR-23b는 잠재적 종양 억제자로서 효과적인 치료적 타겟으로 예상된다.

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-hodgkin lymphoma. Advances in the chemotherapeutic treatment of this disease have improved the outcomes of DLBCL; nonetheless, many patients still die of DLBCL, and therefore, a better understanding of this disease and identification of novel therapeutic targets are urgently required. In a recent gene expression profiling study, PDE (phosphodiesterase) 4B was found to be overexpressed in chemotherapy-resistant tumors. The major function of PDE4B is to inactivate the second messenger cyclic 3',5' monophosphate (cAMP) by catalyzing the hydrolysis of cAMP to 5'AMP. It is known that cAMP induces cell cycle arrest and/or apoptosis in B cells, and PDE4B abolishes cAMP's effect on B cells. However, the mechanism by which PDE4B is overexpressed remains unclear. Here, we show that the aberrant expression of miRNA may be associated with the overexpression of this gene. The PDE4B 3' untranslated region (UTR) has three functional binding sites of miR-23b, as confirmed by luciferase reporter assays. Interestingly, miR-23b-binding sites were evolutionarily conserved from humans to lizards, implying the critical role of PDE4B-miR-23b interaction in cellular physiology. The ectopic expression of miR-2 3b repressed PDE4B mRNA levels and enhanced intracellular cAMP concentrations. Additionally, miR-23b expression inhibited cell proliferation and survival of DLBCL cells only in the presence of forskolin, an activator of adenylyl cyclase, suggesting that miR-23b's effect is via the downregulation of PDE4B. These results together suggest that miR-23b could be a therapeutic target for overcoming drug resistance by repressing PDE4B in DLBCL.

키워드

참고문헌

  1. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, E., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J., Yang, L., Marti, G., Moore, T., Hudson, J., Lu, L., Lewis, D., Tibshirani, R., Sherlock, G., Chan, W., Greiner, T., Weisenburger, D., Armitage, J., Warnke, R., Levy, R., Wilson, W., Grever, M., Byrd, J., Botstein, D., Brown, P. and Staudt, L. M. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511. https://doi.org/10.1038/35000501
  2. Carthwe, R. W. and Sontheimer, E. J. 2009. Origins and Mechanisms of miRNAs and siRNAs. Cell 136, 642-655. https://doi.org/10.1016/j.cell.2009.01.035
  3. Conti, M., Richter, W., Mehats, C., Livera, G., Park, J. Y. and Jin, C. 2003. Cyclic AMP-specific PDE4 phosphodiesterase as critical components of cyclic AMP signaling. J. Biol. Chem. 278, 5493-5496. https://doi.org/10.1074/jbc.R200029200
  4. Cooney, J. D. and Aguiar, R. C. 2016. Phosphodiesterase 4 inhibitors have wide-ranging activity in B cell malignancies. Blood. Oct 18. Pii: blood-2016-09-737676. [Epub ahead of print]
  5. de Rooij, J., Zwartkruis, F. J., Verheijen, M. H., Cool, R. H., Nijman, S. M., Wittinghofer, A. and Bos, J. L. 1998. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474-477. https://doi.org/10.1038/24884
  6. Dremier, S., Kopperud, R., Doskeland, S. O., Dumont, J. E. and Maenhaut, C. 2003. Search for new cyclic AMP-binding proteins. FEBS Lett. 546, 103-107. https://doi.org/10.1016/S0014-5793(03)00561-1
  7. Eulalip, A., Huntzinger, E. and Izaurralde, E. 2008. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9-14. https://doi.org/10.1016/j.cell.2007.12.024
  8. Jeong, D., Kim, J., Nam, J., Sun, H., Lee, Y. H., Lee, T. J., Aguiar, R. C. and Kim, S. W. 2015. MicroRNA-124 links p53 to the NF-kappaB pathway in B-cell lymphomas. Leukemia 29, 1868-1874. https://doi.org/10.1038/leu.2015.101
  9. Kelly, K. R., Mejia, A., Suhasini, A., Lin, A. P., Kuhn, J. G., Karnad, A., Weitman, S. and Aguiar, R. C. 2016. Safety and pharmacodynamics of the PDE4 inhibitor roflumilast in advanced B cell malignancies. Clin. Cancer Res. 2016. Aug 19. Pii: clincanres.12072016. [Epub ahead of print]
  10. Kim, S. W., Rai, D. and Aguiar, R. C. 2011. Gene set enrichment analysis unveils the mechanism for the phosphodiesterase 4B control of glucocorticoid response in B-cell lymphoma. Clin. Cancer Res. 17, 6723-6732. https://doi.org/10.1158/1078-0432.CCR-11-0770
  11. Kim, S. W., Rai, D., McKeller, M. R. and Aguiar, R. C. 2009. Rational combined targeting of phosphodiesterase 4B and SYK in DLBCL. Blood 113, 6153-6160 https://doi.org/10.1182/blood-2009-02-206128
  12. Kim, S. W., Ramasamy, K., Bouamar, H., Lin, A. P., Jiang, D. and Aguiar, R. C. 2012. MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor suppressor factor alpha-induced protein 3 (TNFAIP3). Proc. Natl. Acad. Sci. USA 109, 7865-7870. https://doi.org/10.1073/pnas.1200081109
  13. Li, C., Kim, S. W., Bolla, A. R., Adhvaryu, S., Kinney, M. C., Robetorye, R. S. and Aguiar, R. C. 2009. Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma. Blood 113, 6681-6690. https://doi.org/10.1182/blood-2009-01-202028
  14. Rai, D., Kim, S. W., MeKeller, M. R., Dahia, P. L. and Aguiar, R. C. 2010. Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc. Natl. Acad. Sci. USA 107, 3111-3116. https://doi.org/10.1073/pnas.0910667107
  15. Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok. J. L., Aguiar, R. C. Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., Ray, T., Koval, M., Last, K., Norton, A., Lister, T., Mesirov, J., Neuberg, D., Lander, E. S., Aster, J. C. and Golub, T. R. 2002. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68-74. https://doi.org/10.1038/nm0102-68
  16. Smith, P. G., Wang, F., Wilkinson, K. N., Savage, L. J., Klein, U., Neuberg, D. S., Bollag, G., Shipp, M. A. and Aguiar, R. C. 2005. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large Bcell lymphoma. Blood 105, 308-316. https://doi.org/10.1182/blood-2004-01-0240
  17. Soderling, S. H. and Beavo, J. A. 2000. Regulation of cAMP and cGMP signaling: new phosphodiesterase and new functions. Curr. Opin. Cell Biol. 12, 174-179. https://doi.org/10.1016/S0955-0674(99)00073-3
  18. Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Tsutsumi, A., Matsuda, Y., Sato-Otsubo, A., Muto, S., Utsunomiya, A., Yamaguchi, K., Uchimaru, K., Ogawa, S. and Watanabe, T. 2012. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121-135. https://doi.org/10.1016/j.ccr.2011.12.015