DOI QR코드

DOI QR Code

Spatial prioritization of climate change vulnerability using uncertainty analysis of multi-criteria decision making method

다기준 의사결정기법의 불확실성 분석기법을 이용한 기후변화 취약성에 대한 지역별 우선순위 결정

  • Song, Jae Yeol (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 송재열 (서울과학기술대학교 건설시스템공학과) ;
  • 정은성 (서울과학기술대학교 건설시스템공학과)
  • Received : 2016.09.20
  • Accepted : 2017.01.19
  • Published : 2017.02.28

Abstract

In this study, robustness index and uncertainty analysis were proposed to quantify the risk inherent in the process of climate change vulnerability assessment. The water supply vulnerability for six metropolitan cities (Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan), except for Seoul, were prioritized using TOPSIS, a kind of multi-criteria decision making method. The robustness index was used to analyze the possibility of rank reversal and the uncertainty analysis was introduced to derive the minimum changed weights of the criteria that determine the rank reversal between any paired cities. As a result, Incheon and Daegu were found to be very vulnerable and Daegu and Busan were derived to be very sensitive. Although Daegu was relatively vulnerable against the other cities, it can be largely improved by developing and performing various climate change adaptation measures because it is more sensitive. This study can be used as a preliminary assessment for establishing and planning climate change adaptation measure.

본 연구는 강건성 지수와 불확실성 분석기법을 활용하여 기후변화 취약성 평가과정에서 발생하는 불확실성을 정량화하였다. 본 연구는 우리나라의 6개 광역시(부산, 대구, 인천, 광주, 대전, 울산)를 대상으로 다기준 의사결정기법 중 하나인 TOPSIS 기법을 이용하여 용수공급 취약성 순위를 산정하였다. 강건성 지수는 두 대상 도시의 순위가 가중치의 변화로 인해 순위역전현상이 발생할 수 있는 가능성을 정량화하고 불확실성 분석 기법은 두 도시 사이에 순위역전이 발생할 수 있는 가중치의 최소 변화량을 산정한다. 그 결과 인천과 대구는 용수공급 측면에서 취약한 것으로 나타났으며, 대구와 부산은 용수공급 취약성에 민감한 것으로 나타났다. 따라서 대구는 다른 대안에 비해 상대적으로 용수공급이 취약한 지역으로 나타났으나, 취약성에 민감하기 때문에 기후변화 적응대책 수립 및 시행을 통해 취약성이 크게 향상될 수 있을 것으로 판단된다. 본 연구는 기후변화와 용수공급 측면에서의 적응전략을 계획하고 수립하는데 있어서 우선적으로 고려해야하는 방향을 제안하는 데 사용될 수 있다.

Keywords

References

  1. Adger, W. N. (2006). "Vulnerability." Global Environmental Change, Vol. 16, pp. 268-281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
  2. Al-Kloub, B., Al-Shemmeri, T., and Pearman, A. (1997). "The role of weights in multi-criteria decision aid, and the ranking of water projects in Jordan." European Journal of Operational Research, Vol. 99, pp. 278-88. https://doi.org/10.1016/S0377-2217(96)00051-3
  3. Barron, H., and Schmidt, P. (1988). "Sensitivity analysis of additive multiattribute value models." Operations Research, Vol. 36, pp. 122-27. https://doi.org/10.1287/opre.36.1.122
  4. Chung, E.-S., and Lee, K. S. (2007). "Identifying Spatial Hazard Ranking Using Multicriteria Decision Making Techniques." Journal of Korean Water Resources Association, Vol. 40, No. 12, pp. 969-983. https://doi.org/10.3741/JKWRA.2007.40.12.969
  5. Chung, E.-S., Won, K., Kim, Y., and Lee, H. (2014). "Water resource vulnerability characteristics by district's population size in a changing climate using subjective and objective weights." Sustainability, Vol. 6, pp. 6141-6157. https://doi.org/10.3390/su6096141
  6. Fussel, H. M., and Klein, R. J. T. (2006). "Climate change vulnerability assessments: an evolution of conceptual thinking." Climatic Change, Vol. 75, pp. 301-329. https://doi.org/10.1007/s10584-006-0329-3
  7. Guillen, S. T., Trejos, M. S., and Canales, R. (1998). "A robustness index of binary preferences." 14th International Conference on Multiple Criteria Decision Making, Charlotte, Virginia.
  8. Hamouda, M. A., Nour el-Din, M. M., and Moursy, F. I. (2009). "Vulnerability assessment of water resources system in the Eastern Nile basin." Water Resources Management, Vol. 23, pp. 2697-2725. https://doi.org/10.1007/s11269-009-9404-7
  9. Hobbs, B. F., Chankong, V., Hamadeh, W., and Stakhiv, E. Z. (1992). "Does choice of multicriteria method matter? An experiment in water resources planning." Water Resources Research, Vol. 28, pp. 1767-1779. https://doi.org/10.1029/92WR00712
  10. Hwang, C. L., and Yoon, K. (1981). "Multiple attribute decision making: Methods and applications." New York: Springer- Verlag.
  11. Hyde, K. M., Maier, H. R., and Colby, C. B. (2005). "A distancebased uncertainty analysis approach to multi-criteria decision analysis for water resource decision making." Journal of Environmental Management, Vol. 77, pp. 278-290.
  12. Jun, K.-S., Chung, E.-S., Sung, J.-Y., and Lee, K. S. (2011). "Development of spatial water resources vulnerability index using climate change index." Science of The Total Environment, Vol. 409, pp. 5228-5242. https://doi.org/10.1016/j.scitotenv.2011.08.027
  13. Jung, I.-W., Bae, D.-H., and Kim, G. (2011). "Recent trends of mean and extreme precipitation in Korea." International Journal of Climatology, Vol. 31, pp. 359-370. https://doi.org/10.1002/joc.2068
  14. Kim, Y., and Chung, E.-S. (2012). "Integrated assessment of climate change and urbanization impact on adaptation strategies: A case study in two small Korean watersheds." Climatic Change, Vol. 115, pp. 853-872. https://doi.org/10.1007/s10584-012-0612-4
  15. Kim, Y., and Chung, E.-S. (2013a). "Assessing climate change vulnerability with group multi-criteria decision making approaches." Climatic Change, Vol. 121, pp. 301-315. https://doi.org/10.1007/s10584-013-0879-0
  16. Kim, Y., and Chung, E.-S. (2013b). "Fuzzy VIKOR approach for assessing the vulnerability of the water supply to climate change and variability in South Korea." Applied Mathematical Modelling, Vol. 37, pp. 9419-9430. https://doi.org/10.1016/j.apm.2013.04.040
  17. Kim, Y.-K., Yoo, J.-A., and Chung, E.-S. (2012). "Water management vulnerability assessment considering climate change in Korea." Climate Change Research, Vol. 3, No. 1, pp. 1-12. https://doi.org/10.3724/SP.J.1248.2012.00001
  18. Koh, J. K. (2009). A study on vulnerability assessment to climate change in Gyeonggi-do. Gyeonggi Research Institute.
  19. Lee, G. M., Jun, K.-S., and Chung, E.-S. (2013). "Integrated multicriteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique." Natural Hazards and Earth System Sciences, Vol. 13, pp. 1293-1312. https://doi.org/10.5194/nhess-13-1293-2013
  20. McCarthy, J. J, Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (2001). Climate change 2001: Impacts, adaptation and vulnerability. Cambridge University Press, Cambridge.
  21. National Institute Environmental Research (2011). Sectoral climate change vulnerability map for guiding the development of climate change adaptation action plan at district level, NIER, Incheon, South Korea.
  22. Padowski, J. C., and Jawitz, J. W. (2012). "Water availability and vulnerability of 225 large cities in the United States." Water Resources Research, Vol. 48, pp. 1-6. https://doi.org/10.1016/j.advwatres.2012.07.002
  23. Roy, B., and Vincke, P. (1981). "Multicriteria analysis: Survey and new directions." European Journal of Operational Research, Vol. 8, pp. 207-218. https://doi.org/10.1016/0377-2217(81)90168-5
  24. Seager, J. (2001). "Perspectives and limitations of indicators in water management." Regional Environmental Change, Vol. 2, pp. 85-92. https://doi.org/10.1007/s101130100031
  25. Son, M., Sung, J.-Y., Chung, E.-S., and Jun, K.-S. (2011). "Development of flood vulnerablity index considering climate change." Journal of Korean Water Resources Association, Vol. 44, No. 3, pp. 231-248. https://doi.org/10.3741/JKWRA.2011.44.3.231
  26. Song, J. Y., and Chung, E.-S. (2016). "Robustness, uncertainty and sensitivity analyses of the TOPSIS method for quantitative climate change vulnerability: A case study of flood damage." Water Resources Management, Vol. 30, No. 13, pp. 4751-4771. https://doi.org/10.1007/s11269-016-1451-2
  27. Soofi, E. S. (1990). "Generalized entropy-based weights for multiattribute value models." Operations Research, Vol. 38, pp. 362-363. https://doi.org/10.1287/opre.38.2.362
  28. Triantaphyllou, E., and Sanchez, A. (1997). "A sensitivity analysis approach for some determistic multi-criteria decision-making methods." Decision Sciences, Vol. 28, No. 1, pp. 151-194. https://doi.org/10.1111/j.1540-5915.1997.tb01306.x
  29. Vorosmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. (2000). "Global water resources: Vulnerability from climate change and population growth." Science, Vol. 289, pp. 284-288. https://doi.org/10.1126/science.289.5477.284
  30. Won, K., Chung, E.-S., and Choi, S.-U. (2015). "Parametric assessment for water use vulnerability using fuzzy entropy-coupled TOPSIS method." Sustainability, Vol. 7, No. 9, pp. 12052-12070. https://doi.org/10.3390/su70912052
  31. Ye, F., and Li, Y. (2014). "An extended TOPSIS model based on the possibility theory under fuzzy environment." Knowledge-Based Systems, Vol. 67, pp. 263-269. https://doi.org/10.1016/j.knosys.2014.04.046
  32. Yeh, C.H., Willis, R.J., Deng, H., and Pan, H. (1999). "Task oriented weighting in multi-criteria analysis." European Journal of Operational Research, Vol. 119, pp. 130-146. https://doi.org/10.1016/S0377-2217(98)90353-8
  33. Zeng, F., Jai, C., and Wang, Z. (2012). "Flood risk assessment based on principal component analysis for Dongjiang river basin." 2nd International Conferenceon Remote Sensing, Environment and Transportation Engineering, Nanjing, China.