References
- Abdelgader, H.S. (1996), "Effect of quantity of sand on the compressive strength of two-stage concrete", Mag. Concrete Res., 48(177), 353-360. https://doi.org/10.1680/macr.1996.48.177.353
- Abdelgader, H.S. (1999), "How to design concrete produced by a two-stage concreting method", Cement Concrete Res., 29(3), 331-337. https://doi.org/10.1016/S0008-8846(98)00215-4
- Abdelgader, H.S. and Elgalhud, A.A. (2008), "Effect of grout proportions on strength of two-stage concrete", Struct. Concrete, 9(3), 163-170. https://doi.org/10.1680/stco.2008.9.3.163
- Abdelgader, H.S., Jaroslaw, G., Jamal, M.K. and El-Baden, A. (2016), "Two-stage concrete: Effect of silica fume and superplasticizers on strength", BFT Concrete Prec. Plant Technol., 82(3), 38-47.
- Abdul Awal, A.S. (1984), "Manufacture and properties of prepacked aggregate concrete", M.S. Dissertation, University of Melbourne, Australia.
- ACI 304.1 (2005), Guide for the Use of Preplaced Aggregate Concrete for Structural and Mass Concrete Applications, Farmington Hills, Michigan, U.S.A.
- ASTM C 939 (2010), Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method), West Conshohocken, U.S.A.
- ASTM C 942 (2010), Standard Test Method for Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory, West Conshohocken, U.S.A.
- ASTM C496/C496M (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, West Conshohocken, U.S.A.
- ASTM C938 (2010), Standard Practice for Proportioning Grout Mixtures for Preplaced-Aggregate Concrete, West Conshohocken, U.S.A.
- ASTM C943 (2010), Standard Practice for Making Test Cylinders and Prisms for Determining Strength and Density of Preplaced-Aggregate Concrete in the Laboratory, West Conshohocken, U.S.A.
- Bassuoni, M.T. and Nehdi, M.L. (2008), "Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes", Comput. Concrete, 5(6), 573-597. https://doi.org/10.12989/cac.2008.5.6.573
- Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249
- Coo, M. and Pheeraphan, T. (2015), "Effect of sand, fly ash, and coarse aggregate gradation on preplaced aggregate concrete studied through factorial design", Constr. Build. Mater., 93, 812-821. https://doi.org/10.1016/j.conbuildmat.2015.05.086
- Da Silva, W.R. and Stemberk, P. (2013), "Optimized fuzzy logic model for predicting self-compacting concrete shrinkage", Mechanika, 19(1), 67-72.
- Demir, F. (2005), "A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic", Cement Concrete Res., 35(8), 1531-1538. https://doi.org/10.1016/j.cemconres.2005.01.001
- Feng, M.Q., Chung, L. and Park, T.W. (2009), "Neuro-fuzzy application for concrete strength prediction using combined non-destructive tests", Mag. Concrete Res., 61(4), 245-256. https://doi.org/10.1680/macr.2007.00127
- Hunger, M. and Brouwers, H.J.H. (2009), "Flow analysis of waterowder mixtures: Aplication to specific surface area and shape factor", Cement Concrete Compos., 31(1), 39-59. https://doi.org/10.1016/j.cemconcomp.2008.09.010
- Kute, S.Y. and Kale, R.S. (2013), "Five-layer fuzzy inference system to design a concrete", ACI Mater. J., 110(6), 629-639.
- Mamdani, E.H. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", J. Man-Machine Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
- Najjar, M., Soliman, A. and Nehdi, M. (2014), "Critical overview of two stage concrete: Properties and applications", Constr. Build. Mater., 62, 47-58. https://doi.org/10.1016/j.conbuildmat.2014.03.021
- Najjar, M., Soliman, A. and Nehdi, M. (2016), "Two-stage concrete made with single, binary and ternary binders", Mater. Struct., 49(1), 317-327. https://doi.org/10.1617/s11527-014-0499-9
- Nehdi, M.L. and Bassuoni, M.T. (2009), "Fuzzy logic approach for estimating durability of concrete", Proceedings of the Institution of Civil Engineers-Construction Materials, 162(2), 81-92. https://doi.org/10.1680/coma.2009.162.2.81
- O'Malley, J. and Abdelgader, H. (2010), "Investigation into viability of using two stage (preplaced aggregate) concrete in an Irish setting", Front. Architect. Civil Eng. China, 4(1), 127-132. https://doi.org/10.1007/s11709-010-0007-4
- Ross, T.J. (2010), Fuzzy Logic with Engineering Applications, 3rd Edition, John Wiley & Sons Ltd., Chichester, U.K.
- Sivanandam, S.N., Sumathi, S. and Deepa, S.N. (2007), Introduction to Fuzzy Logic using MATLAB, Springer-Verlag Berlin Heidelberg, New York, U.S.A.
- Subasi, S., Beycioglu, A., Sancak, E. and Sahin, I. (2013), "Rulebased mamdani type fuzzy logic model for the prediction of compressive strength of silica fume included concrete using non-destructive test results", Neur. Comput. Appl., 22(6), 1133-1139. https://doi.org/10.1007/s00521-012-0879-4
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385
- Zadeh, L.A. (1965), "Fuzzy set", Informat. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201
Cited by
- Predicting the mechanical properties of ordinary concrete and nano-silica concrete using micromechanical methods vol.43, pp.12, 2018, https://doi.org/10.1007/s12046-018-0965-0