DOI QR코드

DOI QR Code

Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Choi, Eun-Ok (Department of Food and Nutrition, College of Human Ecology, Pusan National University) ;
  • Cho, Eun-Ju (Department of Food and Nutrition, College of Human Ecology, Pusan National University) ;
  • Jeong, Jin-Woo (Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University) ;
  • Park, Cheol (Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University) ;
  • Hong, Su-Hyun (Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Hwang, Hye-Jin (Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University) ;
  • Moon, Sung-Kwon (Department of Food and Nutrition, Chung-Ang University) ;
  • Son, Chang Gue (Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University) ;
  • Kim, Wun-Jae (Department of Urology, Chungbuk National University College of Medicine) ;
  • Choi, Yung Hyun (Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University)
  • Received : 2016.05.03
  • Accepted : 2016.06.07
  • Published : 2017.03.01

Abstract

Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.

Keywords

References

  1. Angelow, S. and Yu, A. S. (2007) Claudins and paracellular transport: an update. Curr. Opin. Nephrol. Hypertens. 16, 459-464. https://doi.org/10.1097/MNH.0b013e32820ac97d
  2. Batra, S., Balamayooran, G. and Sahoo, M. K. (2011) Nuclear factor-${\kappa}B$: a key regulator in health and disease of lungs. Arch. Immunol. Ther. Exp. (Warsz.) 59, 335-351. https://doi.org/10.1007/s00005-011-0136-z
  3. Chen, K., Zhang, S., Ji, Y., Li, J., An, P., Ren, H., Liang, R., Yang, J. and Li, Z. (2013) Baicalein inhibits the invasion and metastatic capabilities of hepatocellular carcinoma cells via down-regulation of the ERK pathway. PLoS ONE 8, e72927. https://doi.org/10.1371/journal.pone.0072927
  4. Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., Kandouz, M. and Honn, K. V. (2013) Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-${\kappa}B$. Int. J. Cancer 133, 1784-1791. https://doi.org/10.1002/ijc.28165
  5. Egeblad, M. and Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174. https://doi.org/10.1038/nrc745
  6. Fernandez, A. (2015) Dermatology update: The dawn of targeted treatment. Cleve. Clin. J. Med. 82, 309-320. https://doi.org/10.3949/ccjm.82gr.15002
  7. Foth, M., Wouters, J., de Chaumont, C., Dynoodt, P. and Gallagher, W. M. (2016) Prognostic and predictive biomarkers in melanoma: an update. Expert Rev. Mol. Diagn. 16, 223-237. https://doi.org/10.1586/14737159.2016.1126511
  8. Gong, W. Y., Wu, J. F., Liu, B. J., Zhang, H. Y., Cao, Y. X., Sun, J., Lv, Y. B., Wu, X. and Dong, J. C. (2014) Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int. J. Oncol. 44, 1561-1570. https://doi.org/10.3892/ijo.2014.2320
  9. Guo, Z., Hu, X., Xing, Z., Xing, R., Lv, R., Cheng, X., Su, J., Zhou, Z., Xu, Z., Nilsson, S. and Liu, Z. (2015) Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway. Mol. Cell. Biochem. 406, 111-119. https://doi.org/10.1007/s11010-015-2429-8
  10. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  11. Hsu, R. Y., Chan, C. H., Spicer, J. D., Rousseau, M. C., Giannias, B., Rousseau, S. and Ferri, L. E. (2011) LPS-induced TLR4 signaling in human colorectal cancer cells increases ${\beta}1$ integrin-mediated cell adhesion and liver metastasis. Cancer Res. 71, 1989-1998. https://doi.org/10.1158/0008-5472.CAN-10-2833
  12. Huang, Y., Tsang, S. Y., Yao, X. and Chen, Z. Y. (2005) Biological properties of baicalein in cardiovascular system. Curr. Drug Targets Cardiovasc. Haematol. Disord. 5, 177-184. https://doi.org/10.2174/1568006043586206
  13. Izraely, S., Sagi-Assif, O., Klein, A., Meshel, T., Ben-Menachem, S., Zaritsky, A., Ehrlich, M., Prieto, V. G., Bar-Eli, M., Pirker, C., Berger, W., Nahmias, C., Couraud, P. O., Hoon, D. S. and Witz, I. P. (2015) The metastatic microenvironment: Claudin-1 suppresses the malignant phenotype of melanoma brain metastasis. Int. J. Cancer 136, 1296-1307. https://doi.org/10.1002/ijc.29090
  14. Kakavand, H., Wilmott, J. S., Long, G. V. and Scolyer, R. A. (2016) Targeted therapies and immune checkpoint inhibitors in the treatment of metastatic melanoma patients: a guide and update for pathologists. Pathology 48, 194-202. https://doi.org/10.1016/j.pathol.2015.12.010
  15. Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67. https://doi.org/10.1016/j.cell.2010.03.015
  16. Khasigov, P. Z., Podobed, O. V., Gracheva, T. S., Salbiev, K. D., Grachev, S. V. and Berezov, T. T. (2003) Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. Biochemistry Mosc. 68, 711-717. https://doi.org/10.1023/A:1025051214001
  17. Kim, S. J., Kim, H. J., Kim, H. R., Lee, S. H., Cho, S. D., Choi, C. S., Nam, J. S. and Jung, J. Y. (2012) Antitumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol. Med. Rep. 6, 1443-1449. https://doi.org/10.3892/mmr.2012.1085
  18. Lee, H. Z., Leung, H. W., Lai, M. Y. and Wu, C. H. (2005) Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res. 25, 959-964.
  19. Lee, H., Pyo, M. J., Bae, S. K., Heo, Y., Kim, C. G., Kang C. and Kim E. (2015) Improved therapeutic profiles of PLA2-free bee venom prepared by ultrafiltration method. Toxicol. Res. 31, 33-40. https://doi.org/10.5487/TR.2015.31.1.033
  20. Leiter, U., Eigentler, T. and Garbe, C. (2014) Epidemiology of skin cancer. Adv. Exp. Med. Biol. 810, 120-140.
  21. Li, C., Li, F., Zhao, K., Yao, J., Cheng, Y., Zhao, L., Li, Z., Lu, N. and Guo, Q. (2014) LFG-500 inhibits the invasion of cancer cells via down-regulation of PI3K/AKT/NF-${\kappa}B$ signaling pathway. PLoS ONE 9, e91332. https://doi.org/10.1371/journal.pone.0091332
  22. Li, C., Lin, G. and Zuo, Z. (2011) Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharm. Drug Dispos. 32, 427-445. https://doi.org/10.1002/bdd.771
  23. Li, H. L., Zhang, S., Wang, Y., Liang, R. R., Li, J., An, P., Wang, Z. M., Yang, J. and Li, Z. F. (2013) Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells. Mol. Med. Rep. 7, 266-270. https://doi.org/10.3892/mmr.2012.1123
  24. Liu, G., Xu, S., Jiao, F., Ren, T. and Li, Q. (2015) Vascular endothelial growth factor B coordinates metastasis of non-small cell lung cancer. Tumour Biol. 36, 2185-2191. https://doi.org/10.1007/s13277-014-2829-5
  25. Liu-Smith, F. and Meyskens, F. L. (2016) Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol. Nutr. Food Res. 60, 1264-1274. https://doi.org/10.1002/mnfr.201500822
  26. Li-Weber, M. (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat. Rev. 35, 57-68. https://doi.org/10.1016/j.ctrv.2008.09.005
  27. Morin, P. J. (2005) Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res. 65, 9603-9606. https://doi.org/10.1158/0008-5472.CAN-05-2782
  28. Mu, J., Liu, T., Jiang, L., Wu, X., Cao, Y., Li, M., Dong, Q., Liu, Y. and Xu, H. (2016) The traditional Chinese medicine baicalein potently inhibits gastric cancer cells. J. Cancer 7, 453-461. https://doi.org/10.7150/jca.13548
  29. Nagai, T., Yamada, H. and Otsuka, Y. (1989) Inhibition of mouse liver sialidase by the root of Scutellaria baicalensis. Planta Med. 55, 27-29. https://doi.org/10.1055/s-2006-961769
  30. Naugler, W. E. and Karin, M. (2008) NF-${\kappa}B$ and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev. 18, 19-26. https://doi.org/10.1016/j.gde.2008.01.020
  31. O'Leary, D. P., Bhatt, L., Woolley, J. F., Gough, D. R., Wang, J. H., Cotter, T. G. and Redmond, H. P. (2012) TLR-4 signalling accelerates colon cancer cell adhesion via NF-${\kappa}B$ mediated transcriptional up-regulation of Nox-1. PLoS ONE 7, e44176. https://doi.org/10.1371/journal.pone.0044176
  32. Park, S. Y., Kim, Y. H., Kim, Y. and Lee, S. J. (2012) Aromatic-turmerone attenuates invasion and expression of MMP-9 and COX-2 through inhibition of NF-${\kappa}B$ activation in TPA-induced breast cancer cells. J. Cell. Biochem. 113, 3653-3662. https://doi.org/10.1002/jcb.24238
  33. Rogiers, A., van den Oord, J. J., Garmyn, M., Stas, M., Kenis, C., Wildiers, H., Marine, J. C. and Wolter, P. (2015) Novel therapies for metastatic melanoma: An update on their use in older patients. Drugs Aging 32, 821-834. https://doi.org/10.1007/s40266-015-0304-7
  34. Saeki, R., Kondoh, M., Kakutani, H., Matsuhisa, K., Takahashi, A., Suzuki, H., Kakamu, Y., Watari, A. and Yagi, K. (2010) A claudin-targeting molecule as an inhibitor of tumor metastasis. J. Pharmacol. Exp. Ther. 334, 576-582. https://doi.org/10.1124/jpet.110.168070
  35. Schneeberger, E. E. and Lynch, R. D. (2004) The tight junction: A multifunctional complex. Am. J. Physiol., Cell Physiol. 286, C1213-C1228. https://doi.org/10.1152/ajpcell.00558.2003
  36. Singh, A. B., Sharma, A. and Dhawan, P. (2010) Claudin family of proteins and cancer: an overview. J. Oncol. 2010, 541957.
  37. Soler, A. P., Miller, R. D., Laughlin, K. V., Carp, N. Z., Klurfeld, D. M. and Mullin, J. M. (1999) Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20, 1425-1431. https://doi.org/10.1093/carcin/20.8.1425
  38. Tsukita, S. and Furuse, M. (2000) Pores in the wall: Claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. 149, 13-16. https://doi.org/10.1083/jcb.149.1.13
  39. Utech, M., Brüer, M. and Nusrat, A. (2006) Tight junctions and cell-cell interactions. Methods Mol. Biol. 341, 185-195.
  40. Valastyan, S. and Weinberg, R. A. (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292. https://doi.org/10.1016/j.cell.2011.09.024
  41. Vu, T. H. and Werb, Z. (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 14, 2123-2133. https://doi.org/10.1101/gad.815400
  42. Wang, L., Ling, Y., Chen, Y., Li, C. L., Feng, F., You, Q. D., Lu, N. and Guo, Q. L. (2010) Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett. 297, 42-48. https://doi.org/10.1016/j.canlet.2010.04.022
  43. Wang, Z., Jiang, C., Chen, W., Zhang, G., Luo, D., Cao, Y., Wu, J., Ding, Y. and Liu, B. (2014) Baicalein induces apoptosis and autophagy via endoplasmic reticulum stress in hepatocellular carcinoma cells. Biomed Res. Int. 2014, 732516.
  44. Yilmaz, M., Christofori, G. and Lehembre, F. (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol. Med. 13, 535-541. https://doi.org/10.1016/j.molmed.2007.10.004
  45. Zhang, Y., Song, L., Cai, L., Wei, R., Hu, H. and Jin, W. (2013) Effects of baicalein on apoptosis, cell cycle arrest, migration and invasion of osteosarcoma cells. Food Chem. Toxicol. 53, 325-333. https://doi.org/10.1016/j.fct.2012.12.019

Cited by

  1. The axis IL-10/claudin-10 is implicated in the modulation of aggressiveness of melanoma cells by B-1 lymphocytes vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0187333
  2. Scutellaria baicalensis Georgi induces caspase-dependent apoptosis via mitogen activated protein kinase activation and the generation of reactive oxygen species signaling pathways in MCF-7 breast cancer cells vol.16, pp.2, 2017, https://doi.org/10.3892/mmr.2017.6798
  3. Liposome-Encapsulated Baicalein Suppressed Lipogenesis and Extracellular Matrix Formation in Hs68 Human Dermal Fibroblasts vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00155
  4. Lycorine inhibits melanoma A375 cell growth and metastasis through the inactivation of the PI3K/AKT signaling pathway vol.34, pp.1958-5381, 2018, https://doi.org/10.1051/medsci/201834f106
  5. miR-188-5p regulates proliferation and invasion via PI3K/Akt/MMP-2/9 signaling in keloids vol.51, pp.2, 2019, https://doi.org/10.1093/abbs/gmy165
  6. Nonimmobilized Biomaterial Capillary Electrophoresis for Screening Drugs Targeting Human Glucose Transporter 1 vol.89, pp.23, 2017, https://doi.org/10.1021/acs.analchem.7b03811
  7. Effect of Baicalein on Matrix Metalloproteinases and Durability of Resin-Dentin Bonding vol.43, pp.4, 2018, https://doi.org/10.2341/17-097-l
  8. Baicalein suppresses non small cell lung cancer cell proliferation, invasion and Notch signaling pathway vol.22, pp.1, 2018, https://doi.org/10.3233/cbm-170673
  9. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1 vol.52, pp.12, 2017, https://doi.org/10.1590/1414-431x20198934
  10. Citrus unshiu peel suppress the metastatic potential of murine melanoma B16F10 cells in vitro and in vivo vol.33, pp.12, 2017, https://doi.org/10.1002/ptr.6497
  11. The Research on the Treatment of Metastatic Skin Cutaneous Melanoma by Huanglian Jiedu Decoction Based on the Analysis of Immune Infiltration Analysis vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9952060
  12. Baicalein inhibits FURIN‐MT1‐MMP‐mediated invasion of ectopic endometrial stromal cells in endometriosis possibly by reducing the secretion of TGFB1 vol.85, pp.3, 2017, https://doi.org/10.1111/aji.13344
  13. In Vitro Effects of Selective COX and LOX Inhibitors and Their Combinations with Antineoplastic Drugs in the Mouse Melanoma Cell Line B16F10 vol.22, pp.12, 2017, https://doi.org/10.3390/ijms22126498
  14. Anti-proliferative and pro-apoptotic activity of glycosidic derivatives of lawsone in melanoma cancer cell vol.21, pp.1, 2017, https://doi.org/10.1186/s12885-021-08404-4
  15. Baicalein Inhibits Metastatic Phenotypes in Nasopharyngeal Carcinoma Cells via a Focal Adhesion Protein Integrin β8 vol.15, pp.1, 2017, https://doi.org/10.3390/ph15010005