DOI QR코드

DOI QR Code

Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites

  • Lim, Young-Ran (Department of Biological Sciences, Konkuk University) ;
  • Han, Songhee (Department of Biological Sciences, Konkuk University) ;
  • Kim, Joo-Hwan (Department of Biological Sciences, Konkuk University) ;
  • Park, Hyoung-Goo (Department of Biological Sciences, Konkuk University) ;
  • Lee, Ga-Young (School of Biological Sciences and Technology, Chonnam National University) ;
  • Le, Thien-Kim (School of Biological Sciences and Technology, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Donghak (Department of Biological Sciences, Konkuk University)
  • Received : 2016.08.16
  • Accepted : 2016.09.22
  • Published : 2017.03.01

Abstract

Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin synthase from S. coelicolor A3(2). Recombinant S. avermitilis CYP158A3 was heterologously expressed and purified. It exhibited the typical P450 Soret peak at 447 nm in the reduced CO-bound form. Type I binding spectral changes were observed when CYP158A3 was titrated with myristic acid; however, no oxidative product was formed. An analog of flaviolin, 2-hydroxynaphthoquinone (2-OH NQ) displayed similar type I binding upon titration with purified CYP158A3. It underwent an enzymatic reaction forming dimerized product. A homology model of CYP158A3 was superimposed with the structure of CYP158A2, and the majority of structural elements aligned. These results suggest that CYP158A3 might be an orthologue of biflaviolin synthase, catalyzing C-C coupling reactions during pigment biosynthesis in S. avermitilis.

Keywords

References

  1. Burg, R. W., Miller, B. M., Baker, E. E., Birnbaum, J., Currie, S. A., Hartman, R., Kong, Y. L., Monaghan, R. L., Olson, G., Putter, I., Tunac, J. B., Wallick, H., Stapley, E. O., Oiwa, R. and Omura, S. (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15, 361-367. https://doi.org/10.1128/AAC.15.3.361
  2. Demain, A. L. (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52, 455-463. https://doi.org/10.1007/s002530051546
  3. Guengerich, F. P. (2008) Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 21, 70-83. https://doi.org/10.1021/tx700079z
  4. Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2015) Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575, 1-7. https://doi.org/10.1016/j.abb.2015.03.025
  5. Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2016) Structural analysis of the Streptomyces avermitilis CYP107W1-oligomycin A complex and role of the tryptophan 178 residue. Mol. Cells 39, 211-216. https://doi.org/10.14348/molcells.2016.2226
  6. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M., and Omura, S. (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526-531. https://doi.org/10.1038/nbt820
  7. Kelly, S. L., Kelly, D. E., Jackson, C. J., Warrilow, A. G. S. and Lamb, D. C. (2005) The Diversity and Importance of Microbial Cytochrome P450. In Cytochrome P450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), pp. 585-617. Plenum Press, New York.
  8. Kim, D., Wu, Z. L. and Guengerich, F. P. (2005) Analysis of coumarin 7-hydroxylation activity of cytochrome P450 2A6 using random mutagenesis. J. Biol. Chem. 280, 40319-40327. https://doi.org/10.1074/jbc.M508171200
  9. Lamb, D. C., Ikeda, H., Nelson, D. R., Ishikawa, J., Skaug, T., Jackson, C., Omura, S., Waterman, M. R. and Kelly, S. L. (2003) Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem. Biophys. Res. Commun. 307, 610-619. https://doi.org/10.1016/S0006-291X(03)01231-2
  10. Lee, G. Y., Kim, D. H., Kim, D., Ahn, T. and Yun, C. H. (2015) Functional characterization of steroid hydroxylase CYP106A1 derived from Bacillus megaterium. Arch. Pharm. Res. 38, 98-107. https://doi.org/10.1007/s12272-014-0366-9
  11. Lim, Y. R., Hong, M. K., Kim, J. K., Doan, T. T., Kim, D. H., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2012) Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch. Biochem. Biophys. 528, 111-117. https://doi.org/10.1016/j.abb.2012.09.001
  12. McLean, K. J., Leys, D. and Munro, A. W. (2015) Microbial Cytochromes P450. In Cytochrome P450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), pp. 261-407. Springer, New York.
  13. Notredame, C., Higgins, D. G. and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217. https://doi.org/10.1006/jmbi.2000.4042
  14. Ortiz de Montellano, P. R. (2015) Cytochrome P450: Structure, Mechanism, and Biochemistry. Springer, New York.
  15. Park, H. G., Lee, I. S., Chun, Y. J., Yun, C. H., Johnston, J. B., Montellano, P. R. and Kim, D. (2011) Heterologous expression and characterization of the sterol $14{\alpha}$-demethylase CYP51F1 from Candida albicans. Arch. Biochem. Biophys. 509, 9-15. https://doi.org/10.1016/j.abb.2011.02.002
  16. Park, H. G., Lim, Y. R., Han, S. and Kim, D. (2014) Expression and characterization of truncated recombinant human cytochrome P450 2J2. Toxicol. Res. 30, 33-38. https://doi.org/10.5487/TR.2014.30.1.033
  17. Schenkman, J. B., Remmer, H. and Estabrook, R. W. (1967) Spectral studies of drug interaction with hepatic microsomal cytochrome P-450. Mol. Pharmacol. 3, 113-123.
  18. Yun, C. H., Kim, K. H., Calcutt, M. W. and Guengerich, F. P. (2005) Kinetic analysis of oxidation of coumarins by human cytochrome P450 2A6. J. Biol. Chem. 280, 12279-12291. https://doi.org/10.1074/jbc.M411019200
  19. Zhao, B., Bellamine, A., Lei, L. and Waterman, M. R. (2012) The role of Ile87 of CYP158A2 in oxidative coupling reaction. Arch. Biochem. Biophys. 518, 127-132. https://doi.org/10.1016/j.abb.2011.12.007
  20. Zhao, B., Guengerich, F. P., Bellamine, A., Lamb, D. C., Izumikawa, M., Lei, L., Podust, L. M., Sundaramoorthy, M., Kalaitzis, J. A., Reddy, L. M., Kelly, S. L., Moore, B. S., Stec, D., Voehler, M., Falck, J. R., Shimada, T. and Waterman, M. R. (2005a) Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J. Biol. Chem. 280, 11599-11607. https://doi.org/10.1074/jbc.M410933200
  21. Zhao, B., Guengerich, F. P., Voehler, M. and Waterman, M. R. (2005b) Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer. J. Biol. Chem. 280, 42188-42197. https://doi.org/10.1074/jbc.M509220200
  22. Zhao, B., Lamb, D. C., Lei, L., Kelly, S. L., Yuan, H., Hachey, D. L. and Waterman, M. R. (2007) Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2. Biochemistry 46, 8725-8733. https://doi.org/10.1021/bi7006959

Cited by

  1. functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10 vol.81, pp.12, 2018, https://doi.org/10.1080/15287394.2018.1460784
  2. Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents vol.27, pp.2, 2019, https://doi.org/10.4062/biomolther.2018.183
  3. CYP52A23 from Candida albicans and its Substrate Preference for Fatty Acid Hydroxylation vol.671, pp.None, 2017, https://doi.org/10.1016/j.abb.2019.06.002