DOI QR코드

DOI QR Code

Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction

  • Received : 2016.02.18
  • Accepted : 2016.04.22
  • Published : 2017.03.01

Abstract

Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John's Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.

Keywords

References

  1. Akhand, A. A., Hossain, K., Mitsui, H., Kato, M., Miyata, T., Inagi, R., Du, J., Takeda, K., Kawamoto, Y., Suzuki, H., Kurokawa, K. and Nakashima, I. (2001) Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic. Biol. Med. 31, 20-30. https://doi.org/10.1016/S0891-5849(01)00550-0
  2. Biswas, S., Gairola, C. G. and Das, S. K. (2002) Passive cigarette smoke and the renal glyoxalase system. Mol. Cell. Biochem. 229, 153-156. https://doi.org/10.1023/A:1017992403656
  3. Bourajjaj, M., Stehouwer, C. D., van Hinsbergh, V. W. and Schalkwijk, C. G. (2003) Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem. Soc. Trans. 31, 1400-1402. https://doi.org/10.1042/bst0311400
  4. Caccia, S. (2005) Antidepressant-like components of Hypericum perforatum extracts: an overview of their pharmacokinetics and metabolism. Curr. Drug Metab. 6, 531-543. https://doi.org/10.2174/138920005774832641
  5. Cakir, A., Mavi, A., Yildirim, A., Duru, M. E., Harmandar, M. and Kazaz, C. (2003) Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. J. Ethnopharmacol. 87, 73-83. https://doi.org/10.1016/S0378-8741(03)00112-0
  6. Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M. and Green, D. R. (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014. https://doi.org/10.1126/science.1092734
  7. Degen, J., Hellwig, M. and Henle, T. (2012) 1,2-dicarbonyl compounds in commonly consumed foods. J. Agric. Food Chem. 60, 7071-7079. https://doi.org/10.1021/jf301306g
  8. Desai, K. and Wu, L. (2007) Methylglyoxal and advanced glycation endproducts: new therapeutic horizons? Recent Pat. Cardiovasc. Drug Discov. 2, 89-99. https://doi.org/10.2174/157489007780832498
  9. Desai, K. M., Chang, T., Wang, H., Banigesh, A., Dhar, A., Liu, J., Untereiner, A. and Wu, L. (2010) Oxidative stress and aging: is methylglyoxal the hidden enemy? Can. J. Physiol. Pharmacol. 88, 273-284. https://doi.org/10.1139/Y10-001
  10. Figarola, J. L., Singhal, J., Rahbar, S., Awasthi, S. and Singhal, S. S. (2014) LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells. Apoptosis 19, 776-788. https://doi.org/10.1007/s10495-014-0974-3
  11. Galeotti, N., Vivoli, E., Bilia, A. R., Vincieri, F. F. and Ghelardini, C. (2010) St. John's Wort reduces neuropathic pain through a hypericin-mediated inhibition of the protein kinase Cgamma and epsilon activity. Biochem. Pharmacol. 79, 1327-1336. https://doi.org/10.1016/j.bcp.2009.12.016
  12. Gioti, E. M., Fiamegos, Y. C., Skalkos, D. C. and Stalikas, C. D. (2009) Antioxidant activity and bioactive components of the aerial parts of Hypericum perforatum L. from Epirus, Greece. Food Chem. 117, 398-404. https://doi.org/10.1016/j.foodchem.2009.04.016
  13. Gugliucci, A., Bastos, D. H., Schulze, J. and Souza, M. F. (2009) Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 80, 339-344. https://doi.org/10.1016/j.fitote.2009.04.007
  14. Hanssen, N. M., Wouters, K., Huijberts, M. S., Gijbels, M. J., Sluimer, J. C., Scheijen, J. L., Heeneman, S., Biessen, E. A., Daemen, M. J., Brownlee, M., de Kleijn, D. P., Stehouwer, C. D., Pasterkamp, G. and Schalkwijk, C. G. (2014) Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur. Heart J. 35, 1137-1146. https://doi.org/10.1093/eurheartj/eht402
  15. Hu, T.-Y., Liu, C.-L., Chen, J.-Y. and Hu, M.-L. (2013) Curcumin ameliorates methylglyoxal-induced alterations of cellular morphology and hyperpermeability in human umbilical vein endothelial cells. J. Funct. Foods 5, 745-754. https://doi.org/10.1016/j.jff.2013.01.020
  16. Jain, S. S., Murch, S. J., Bird, R. P. and Saxena, P. K. (2010) Optimized St. John's Wort (Hypericum perforatum L.) Germplasm Lines Exert Cytotoxicity in HT-29 Colon Cancer Cells via Downregulation of NF-${\kappa}B$. J. Complementary Integr. Med. 7. doi: 10.2202/1553-3840.1283
  17. Kang, B. Y., Chung, S. W. and Kim, T. S. (2001) Inhibition of interleukin-12 production in lipopolysaccharide-activated mouse macrophages by hpyericin, an active component of Hypericum perforatum. Planta Med. 67, 364-366. https://doi.org/10.1055/s-2001-14333
  18. Kiho, T., Kato, M., Usui, S. and Hirano, K. (2005) Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin. Chim. Acta 358, 139-145. https://doi.org/10.1016/j.cccn.2005.02.012
  19. Lapolla, A., Flamini, R., Dalla Vedova, A., Senesi, A., Reitano, R., Fedele, D., Basso, E., Seraglia, R. and Traldi, P. (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin. Chem. Lab. Med. 41, 1166-1173.
  20. Li, B. Y., Li, X. L., Cai, Q., Gao, H. Q., Cheng, M., Zhang, J. H., Wang, J. F., Yu, F. and Zhou, R. H. (2011) Induction of lactadherin mediates the apoptosis of endothelial cells in response to advanced glycation end products and protective effects of grape seed procyanidin B2 and resveratrol. Apoptosis 16, 732-745. https://doi.org/10.1007/s10495-011-0602-4
  21. Lin, M. T. and Beal, M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795. https://doi.org/10.1038/nature05292
  22. Liu, Y., Yang, Y., Ye, Y. C., Shi, Q. F., Chai, K., Tashiro, S., Onodera, S. and Ikejima, T. (2012) Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J. Pharmacol. Sci. 118, 423-432. https://doi.org/10.1254/jphs.11181FP
  23. Lo, C. Y., Li, S., Tan, D., Pan, M. H., Sang, S. and Ho, C. T. (2006) Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol. Nutr. Food Res. 50, 1118-1128. https://doi.org/10.1002/mnfr.200600094
  24. Lv, Q., Gu, C. and Chen, C. (2014) Venlafaxine protects methylglyoxalinduced apoptosis in the cultured human brain microvascular endothelial cells. Neurosci. Lett. 569, 99-103. https://doi.org/10.1016/j.neulet.2014.03.010
  25. Mukohda, M., Okada, M., Hara, Y. and Yamawaki, H. (2012) Exploring mechanisms of diabetes-related macrovascular complications: role of methylglyoxal, a metabolite of glucose on regulation of vascular contractility. J. Pharmacol. Sci. 118, 303-310. https://doi.org/10.1254/jphs.11R12CP
  26. Murphy, K. M., Ranganathan, V., Farnsworth, M. L., Kavallaris, M. and Lock, R. B. (2000) Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ. 7, 102-111. https://doi.org/10.1038/sj.cdd.4400597
  27. Ouyang, Z., Zhai, Z., Li, H., Liu, X., Qu, X., Li, X., Fan, Q., Tang, T., Qin, A. and Dai, K. (2014) Hypericin suppresses osteoclast formation and wear particle-induced osteolysis via modulating ERK signalling pathway. Biochem. Pharmacol. 90, 276-287. https://doi.org/10.1016/j.bcp.2014.06.009
  28. Phalitakul, S., Okada, M., Hara, Y. and Yamawaki, H. (2013) Vaspin prevents methylglyoxal-induced apoptosis in human vascular endothelial cells by inhibiting reactive oxygen species generation. Acta Physiol. (Oxf.) 209, 212-219.
  29. Rabbani, N. and Thornalley, P. J. (2011) Glyoxalase in diabetes, obesity and related disorders. Semin. Cell Dev. Biol. 22, 309-317. https://doi.org/10.1016/j.semcdb.2011.02.015
  30. Ritz, R., Wein, H. T., Dietz, K., Schenk, M., Roser, F., Tatagiba, M. and Strauss, W. S. (2007) Photodynamic therapy of malignant glioma with hypericin: comprehensive in vitro study in human glioblastoma cell lines. Int. J. Oncol. 30, 659-667.
  31. Scheijen, J. L. and Schalkwijk, C. G. (2014) Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen. Clin. Chem. Lab. Med. 52, 85-91.
  32. Sena, C. M., Matafome, P., Crisostomo, J., Rodrigues, L., Fernandes, R., Pereira, P. and Seica, R. M. (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res. 65, 497-506. https://doi.org/10.1016/j.phrs.2012.03.004
  33. Sero, L., Sanguinet, L., Blanchard, P., Dang, B. T., Morel, S., Richomme, P., Seraphin, D. and Derbre, S. (2013) Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules 18, 14320-14339. https://doi.org/10.3390/molecules181114320
  34. Thornalley, P. J. (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification-A role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 27, 565-573. https://doi.org/10.1016/0306-3623(95)02054-3
  35. Thornalley, P. J. (2005) Dicarbonyl intermediates in the maillard reaction. Ann. N. Y. Acad. Sci. 1043, 111-117. https://doi.org/10.1196/annals.1333.014
  36. Weng, X. C. and Wang, W. (2000) Antioxidant activity of compounds isolated from Salvia plebeia. Food Chem. 71, 489-493. https://doi.org/10.1016/S0308-8146(00)00191-6
  37. Xie, Y. and Chen, X. (2013) Structures required of polyphenols for inhibiting advanced glycation end products formation. Curr. Drug Metab. 14, 414-431. https://doi.org/10.2174/1389200211314040005
  38. Yamawaki, H., Saito, K., Okada, M. and Hara, Y. (2008) Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells. Am. J. Physiol., Cell Physiol. 295, C1510-C1517. https://doi.org/10.1152/ajpcell.00252.2008
  39. Yim, H. S., Kang, S. O., Hah, Y. C., Chock, P. B. and Yim, M. B. (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. J. Biol. Chem. 270, 28228-28233. https://doi.org/10.1074/jbc.270.47.28228
  40. Yoo, N. H., Jang, D. S., Lee, Y. M., Jeong, I. H., Cho, J. H., Kim, J. H. and Kim, J. S. (2010) Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharm. Res. 33, 209-214. https://doi.org/10.1007/s12272-010-0204-7
  41. Yow, C. M., Tang, H. M., Chu, E. S. and Huang, Z. (2012) Hypericinmediated photodynamic antimicrobial effect on clinically isolated pathogens. Photochem. Photobiol. 88, 626-632. https://doi.org/10.1111/j.1751-1097.2012.01085.x
  42. Zhu, D., Wang, L., Zhou, Q., Yan, S., Li, Z., Sheng, J. and Zhang, W. (2014) (+)-Catechin ameliorates diabetic nephropathy by trapping methylglyoxal in type 2 diabetic mice. Mol. Nutr. Food Res. 58, 2249-2260. https://doi.org/10.1002/mnfr.201400533

Cited by

  1. An efficient multigram synthesis of hypericin improved by a low power LED based photoreactor pp.1520-586X, 2017, https://doi.org/10.1021/acs.oprd.7b00317
  2. Protective effect of resveratrol on methylglyoxal-induced endothelial dysfunction in aged rats pp.1720-8319, 2019, https://doi.org/10.1007/s40520-018-0986-x
  3. Isosamidin from Peucedanum japonicum Roots Prevents Methylglyoxal-Induced Glucotoxicity in Human Umbilical Vein Endothelial Cells via Suppression of ROS-Mediated Bax/Bcl-2 vol.9, pp.6, 2017, https://doi.org/10.3390/antiox9060531
  4. BIOLOGICAL ACTIVITY OF HYPERICUM PERFORATUM L. (HYPERICACEAE): A REVIEW vol.9, pp.1, 2017, https://doi.org/10.19163/2307-9266-2021-9-1-17-31
  5. Glyoxal and Methylglyoxal as E-cigarette Vapor Ingredients-Induced Pro-Inflammatory Cytokine and Mucins Expression in Human Nasal Epithelial Cells vol.35, pp.2, 2017, https://doi.org/10.1177/1945892420946968
  6. Methylglyoxal induces p53 activation and inhibits mTORC1 in human umbilical vein endothelial cells vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-87561-9