DOI QR코드

DOI QR Code

Intranasal Administration of Interleukin-1 Receptor Antagonist in a Transient Focal Cerebral Ischemia Rat Model

  • Lee, Jae Hoon (Department of Anesthesiology and Pain Medicine, Severance Hospital) ;
  • Kam, Eun Hee (Anesthesia and Pain Research Institute, Yonsei University College of Medicine) ;
  • Kim, Jeong Min (Department of Anesthesiology and Pain Medicine, Severance Hospital) ;
  • Kim, So Yeon (Department of Anesthesiology and Pain Medicine, Severance Hospital) ;
  • Kim, Eun Jeong (Department of Anesthesiology and Pain Medicine, Severance Hospital) ;
  • Cheon, So Yeong (Anesthesia and Pain Research Institute, Yonsei University College of Medicine) ;
  • Koo, Bon-Nyeo (Department of Anesthesiology and Pain Medicine, Severance Hospital)
  • Received : 2016.02.29
  • Accepted : 2016.05.24
  • Published : 2017.03.01

Abstract

The interleukin-1 receptor antagonist (IL-1RA) is a potential stroke treatment candidate. Intranasal delivery is a novel method thereby a therapeutic protein can be penetrated into the brain parenchyma by bypassing the blood-brain barrier. Thus, this study tested whether intranasal IL-1RA can provide neuroprotection and brain penetration in transient cerebral ischemia. In male Sprague-Dawley rats, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1 h. The rats simultaneously received 50 mg/kg human IL-1RA through the intranasal (IN group) or intraperitoneal route (IP group). The other rats were given 0.5 mL/kg normal saline (EC group). Neurobehavioral function, infarct size, and the concentration of the administered human IL-1RA in the brain tissue were assessed. In addition, the cellular distribution of intranasal IL-1RA in the brain and its effect on proinflammatory cytokines expression were evaluated. Intranasal IL-1RA improved neurological deficit and reduced infarct size until 7 days after MCAO (p<0.05). The concentrations of the human IL-1RA in the brain tissue 24 h after MCAO were significantly greater in the IN group than in the IP group (p<0.05). The human IL-1RA was confirmed to be co-localized with neuron and microglia. Furthermore, the IN group had lower expression of $interleukin-1{\beta}$ and tumor necrosis $factor-{\alpha}$ at 6 h after MCAO than the EC group (p<0.05). These results suggest that intranasal IL-1RA can reach the brain parenchyma more efficiently and provide superior neuroprotection in the transient focal cerebral ischemia.

Keywords

References

  1. Allan, S. M., Tyrrell, P. J. and Rothwell, N. J. (2005) Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5, 629-640. https://doi.org/10.1038/nri1664
  2. Amantea, D., Nappi, G., Bernardi, G., Bagetta, G. and Corasaniti, M. T. (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 276, 13-26. https://doi.org/10.1111/j.1742-4658.2008.06766.x
  3. Banwell, V., Sena, E. S. and Macleod, M. R. (2009) Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J. Stroke Cerebrovasc. Dis. 18, 269-276. https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.11.009
  4. Belayev, L., Alonso, O. F., Busto, R., Zhao, W. and Ginsberg, M. D. (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27, 1616-1622. https://doi.org/10.1161/01.STR.27.9.1616
  5. Chalela, J. A., Merino, J. G. and Warach, S. (2004) Update on stroke. Curr. Opin. Neurol. 17, 447-451. https://doi.org/10.1097/01.wco.0000137536.06986.f9
  6. Clark, S. R., McMahon, C. J., Gueorguieva, I., Rowland, M., Scarth, S., Georgiou, R., Tyrrell, P. J., Hopkins, S. J. and Rothwell, N. J. (2008) Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J. Cereb. Blood Flow Metab. 28, 387-394. https://doi.org/10.1038/sj.jcbfm.9600537
  7. Dhuria, S. V., Hanson, L. R. and Frey, W. H., 2nd (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J. Pharm. Sci. 99, 1654-1673. https://doi.org/10.1002/jps.21924
  8. Emsley, H. C., Smith, C. J., Georgiou, R. F., Vail, A., Hopkins, S. J., Rothwell, N. J. and Tyrrell, P. J. (2005) A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatr. 76, 1366-1372. https://doi.org/10.1136/jnnp.2004.054882
  9. Fisher, M., Feuerstein, G., Howells, D. W., Hurn, P. D., Kent, T. A., Savitz, S. I. and Lo, E. H. (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40, 2244-2250. https://doi.org/10.1161/STROKEAHA.108.541128
  10. Fletcher, L., Kohli, S., Sprague, S. M., Scranton, R. A., Lipton, S. A., Parra, A., Jimenez, D. F. and Digicaylioglu, M. (2009) Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J. Neurosurg. 111, 164-170. https://doi.org/10.3171/2009.2.JNS081199
  11. Furrer, E., Hulmann, V. and Urech, D. M. (2009) Intranasal delivery of ESBA105, a TNF-alpha-inhibitory scFv antibody fragment to the brain. J. Neuroimmunol. 215, 65-72. https://doi.org/10.1016/j.jneuroim.2009.08.005
  12. Galea, J. and Brough, D. (2013) The role of inflammation and interleukin-1 in acute cerebrovascular disease. J. Inflamm. Res. 6, 121-128.
  13. Garcia, J. H., Liu, K. F. and Relton, J. K. (1995a) Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion. Am. J. Pathol. 147, 1477-1486.
  14. Garcia, J. H., Wagner, S., Liu, K. F. and Hu, X. J. (1995b) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26, 627-634. https://doi.org/10.1161/01.STR.26.4.627
  15. Grassin Delyle, S., Buenestado, A., Naline, E., Faisy, C., BlouquitLaye, S., Couderc, L., Le Guen, M., Fischler, M. and Devillier, P. (2012) Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol. Ther. 134, 366-379. https://doi.org/10.1016/j.pharmthera.2012.03.003
  16. Greenhalgh, A. D., Galea, J., Denes, A., Tyrrell, P. J. and Rothwell, N. J. (2010) Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. Br. J. Pharmacol. 160, 153-159. https://doi.org/10.1111/j.1476-5381.2010.00684.x
  17. Gueorguieva, I., Clark, S. R., McMahon, C. J., Scarth, S., Rothwell, N. J., Tyrrell, P. J., Hopkins, S. J. and Rowland, M. (2008) Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br. J. Clin. Pharmacol. 65, 317-325. https://doi.org/10.1111/j.1365-2125.2007.03026.x
  18. Gutierrez, E. G., Banks, W. A. and Kastin, A. J. (1994) Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. J. Neuroimmunol. 55, 153-160. https://doi.org/10.1016/0165-5728(94)90005-1
  19. Hannum, C. H., Wilcox, C. J., Arend, W. P., Joslin, F. G., Dripps, D. J., Heimdal, P. L., Armes, L. G., Sommer, A., Eisenberg, S. P. and Thompson, R. C. (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 343, 336-340. https://doi.org/10.1038/343336a0
  20. Hunter, A. J., Hatcher, J., Virley, D., Nelson, P., Irving, E., Hadingham, S. J. and Parsons, A. A. (2000) Functional assessments in mice and rats after focal stroke. Neuropharmacology 39, 806-816. https://doi.org/10.1016/S0028-3908(99)00262-2
  21. Iadecola, C. and Anrather, J. (2011) The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796-808. https://doi.org/10.1038/nm.2399
  22. Illum, L. (2004) Is nose-to-brain transport of drugs in man a reality? J. Pharm. Pharmacol. 56, 3-17. https://doi.org/10.1211/0022357022539
  23. Kim, D. C., Reitz, B., Carmichael, D. F. and Bloedow, D. C. (1995) Kidney as a major clearance organ for recombinant human interleukin-1 receptor antagonist. J. Pharm. Sci. 84, 575-580. https://doi.org/10.1002/jps.2600840511
  24. Lambertsen, K. L., Biber, K. and Finsen, B. (2012) Inflammatory cytokines in experimental and human stroke. J. Cereb. Blood Flow Metab. 32, 1677-1698. https://doi.org/10.1038/jcbfm.2012.88
  25. Loddick, S. A. and Rothwell, N. J. (1996) Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J. Cereb. Blood Flow Metab. 16, 932-940. https://doi.org/10.1097/00004647-199609000-00017
  26. Malerba, F., Paoletti, F., Capsoni, S. and Cattaneo, A. (2011) Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin. Drug Deliv. 8, 1277-1296. https://doi.org/10.1517/17425247.2011.588204
  27. Martin, D., Chinookoswong, N. and Miller, G. (1994) The interleukin-1 receptor antagonist (rhIL-1ra) protects against cerebral infarction in a rat model of hypoxia-ischemia. Exp. Neurol. 130, 362-367. https://doi.org/10.1006/exnr.1994.1215
  28. Mulcahy, N. J., Ross, J., Rothwell, N. J. and Loddick, S. A. (2003) Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischaemia in the rat. Br. J. Pharmacol. 140, 471-476. https://doi.org/10.1038/sj.bjp.0705462
  29. Pradillo, J. M., Denes, A., Greenhalgh, A. D., Boutin, H., Drake, C., McColl, B. W., Barton, E., Proctor, S. D., Russell, J. C., Rothwell, N. J. and Allan, S. M. (2012) Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J. Cereb. Blood Flow Metab. 32, 1810-1819. https://doi.org/10.1038/jcbfm.2012.101
  30. Relton, J. K., Martin, D., Thompson, R. C. and Russell, D. A. (1996) Peripheral administration of Interleukin-1 Receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp. Neurol. 138, 206-213. https://doi.org/10.1006/exnr.1996.0059
  31. Simi, A., Tsakiri, N., Wang, P. and Rothwell, N. J. (2007) Interleukin-1 and inflammatory neurodegeneration. Biochem. Soc. Trans. 35, 1122-1126. https://doi.org/10.1042/BST0351122
  32. Sun, B. L., He, M. Q., Han, X. Y., Sun, J. Y., Yang, M. F., Yuan, H., Fan, C. D., Zhang, S., Mao, L. L., Li, D. W., Zhang, Z. Y., Zheng, C. B., Yang, X. Y., Li, Y. V., Stetler, R. A., Chen, J. and Zhang, F. (2016) Intranasal delivery of granulocyte colony-stimulating factor enhances its neuroprotective effects against ischemic brain injury in rats. Mol. Neurobiol. 53, 320-330. https://doi.org/10.1007/s12035-014-8984-2
  33. Xia, Y., Song, S., Min, Y., Zhong, Y., Sheng, Y., Li, R. and Liu, Q. (2014) The effects of anakinra on focal cerebral ischemic injury in rats. CNS Neurosci. Ther. 20, 879-881. https://doi.org/10.1111/cns.12310
  34. Xing, B., Chen, H., Zhang, M., Zhao, D., Jiang, R., Liu, X. and Zhang, S. (2008) Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 39, 2362-2369. https://doi.org/10.1161/STROKEAHA.107.507939

Cited by

  1. Intranasal delivery of a Fas-blocking peptide attenuates Fas-mediated apoptosis in brain ischemia vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33296-z
  2. Coupling Between Interleukin-1R1 and Necrosome Complex Involves in Hemin-Induced Neuronal Necroptosis After Intracranial Hemorrhage vol.49, pp.10, 2018, https://doi.org/10.1161/STROKEAHA.117.019253
  3. Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? vol.154, pp.3, 2018, https://doi.org/10.1111/imm.12918
  4. Tanshinone IIA protects hypoxia-induced injury by preventing microRNA-28 up-regulation in PC-12 cells vol.854, pp.None, 2017, https://doi.org/10.1016/j.ejphar.2019.04.030
  5. Microglial-targeting induced by intranasal linalool during neurological protection postischemia vol.857, pp.None, 2017, https://doi.org/10.1016/j.ejphar.2019.172420
  6. Pre-clinical to Clinical Translational Failures and Current Status of Clinical Trials in Stroke Therapy: A Brief Review vol.18, pp.7, 2020, https://doi.org/10.2174/1570159x18666200114160844
  7. Immunosuppression and Neuroinflammation in Stroke Pathobiology vol.30, pp.2, 2017, https://doi.org/10.5607/en20033