DOI QR코드

DOI QR Code

The Abuse Potential of α-Piperidinopropiophenone (PIPP) and α-Piperidinopentiothiophenone (PIVT), Two New Synthetic Cathinones with Piperidine Ring Substituent

  • Botanas, Chrislean Jun (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Yoon, Seong Shoon (Center for Safety Pharmacology, Korea Institute of Toxicology) ;
  • de la Pena, June Bryan (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • dela Pena, Irene Joy (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Kim, Mikyung (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Woo, Taeseon (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Seo, Joung-Wook (Center for Safety Pharmacology, Korea Institute of Toxicology) ;
  • Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Park, Kyung-Tae (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Lee, Young Hun (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Lee, Yong Sup (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Kim, Hee Jin (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Cheong, Jae Hoon (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University)
  • Received : 2016.10.27
  • Accepted : 2016.11.24
  • Published : 2017.03.01

Abstract

A diversity of synthetic cathinones has flooded the recreational drug marketplace worldwide. This variety is often a response to legal control actions for one specific compound (e.g. methcathinone) which has resulted in the emergence of closely related replacement. Based on recent trends, the nitrogen atom is one of the sites in the cathinone molecule being explored by designer type modifications. In this study, we designed and synthesized two new synthetic cathinones, (1) ${\alpha}-piperidinopropiophenone$ (PIPP) and (2) ${\alpha}-piperidinopentiothiophenone$ (PIVT), which have piperidine ring substituent on their nitrogen atom. Thereafter, we evaluated whether these two compounds have an abuse potential through the conditioned place preference (CPP) in mice and self-administration (SA) in rats. We also investigated whether the substances can induce locomotor sensitization in mice following 7 days daily injection and challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. PIPP (10 and 30 mg/kg) induced CPP in mice, but not PIVT. However, both synthetic cathinones were not self-administered by the rats and did not induce locomotor sensitization in mice. qRT-PCR analyses showed that PIPP, but not PIVT, reduced dopamine transporter gene expression in the striatum. These data indicate that PIPP, but not PIVT, has rewarding effects, which may be attributed to its ability to affect dopamine transporter gene expression. Altogether, this study suggests that PIPP may have abuse potential. Careful monitoring of this type of cathinone and related drugs are advocated.

Keywords

References

  1. Adriani, W. and Laviola, G. (2003) Elevated levels of impulsivity and reduced place conditioning with d-amphetamine: two behavioral features of adolescence in mice. Behav. Neurosci. 117, 695-703. https://doi.org/10.1037/0735-7044.117.4.695
  2. Botanas, C. J., de la Pena, J. B., Dela Pena, I. J., Tampus, R., Yoon, R., Kim, H.J., Lee, Y. S., Jang, C. G. and Cheong, J. H. (2015) Methoxetamine, a ketamine derivative, produced conditioned place preference and was self-administered by rats: evidence of its abuse potential. Pharmacol. Biochem. Behav. 133, 31-36. https://doi.org/10.1016/j.pbb.2015.03.007
  3. Botanas, C. J., Yoon, S. S., de la Peña, J. B., dela Peña, I. J., Kim, M., Woo, T., Seo, J. W., Jang, C. G., Park, K. T., Lee, Y.H., Lee, Y. S., Kim, H. J. and Cheong, J. H. (2017) A novel synthetic cathinone, 2-(methylamino)-1-(naphthalen-2-yl) propan-1-one (BMAPN), produced rewarding effects and altered striatal dopamine-related gene expression in mice. Behav. Brain. Res. 317, 494-501. https://doi.org/10.1016/j.bbr.2016.10.016
  4. Brandt, S. D., Freeman, S., Sumnall, H. R., Measham, F. and Cole, J. (2011) Analysis of NRG 'legal highs' in the UK: identification and formation of novel cathinones. Drug Test. Anal. 3, 569-575. https://doi.org/10.1002/dta.204
  5. Carroll, F., Lewin, A. H., Mascarella, S. W., Seltzman, H. H. and Reddy, P. A. (2012) Designer drugs: a medicinal chemistry perspective. Ann. N. Y. Acad. Sci. 1248, 18-38. https://doi.org/10.1111/j.1749-6632.2011.06199.x
  6. Coppola, M. and Mondola, R. (2012) Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as "bath salts" or "plant food". Toxicol. Lett. 211, 144-149. https://doi.org/10.1016/j.toxlet.2012.03.009
  7. de la Pena, J. B., Lee, H. C., Ike, C., Woo, T. S., Yoon, S. Y., Lee, H. L., Han, J. S., Lee, J. I., Cho, Y. J., Shin, C. Y. and Cheong, J. H. (2012) Rewarding and reinforcing effects of the NMDA receptor antagonist-benzodiazepine combination, $zoletil^{(R)}$: Difference between acute and repeated exposure. Behav. Brain Res. 233, 434-442. https://doi.org/10.1016/j.bbr.2012.05.038
  8. European Monitoring Centre for Drugs and Drug Addiction (2015) Injection of synthetic cathinones [cited 2016 Sep 25]. Available from: http://www.emcdda.europa.eu/topics/pods/synthetic-cathinonesinjection/.
  9. Everitt, B. J. and Robbins, T. W. (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37, 1946-1954. https://doi.org/10.1016/j.neubiorev.2013.02.010
  10. Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M., Jing, X., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M. and Gratzel, M. (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130, 10720-10728. https://doi.org/10.1021/ja801942j
  11. Gatch, M. B., Taylor, C. M. and Forster, M. J. (2013) Locomotor stimulant and discriminative stimulus effects of 'bath salt' cathinones. Behav. Pharmacol. 24, 437-447. https://doi.org/10.1097/FBP.0b013e328364166d
  12. German, C. L., Fleckenstein, A. E. and Hanson, G. R. (2014) Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci. 97, 2-8. https://doi.org/10.1016/j.lfs.2013.07.023
  13. Goldstein, R. Z. and Volkow, N. D. (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642-1652. https://doi.org/10.1176/appi.ajp.159.10.1642
  14. Hwang, J. Y., Kim, J. S., Oh, J. H., Hong, S. I., Ma, S. X., Jung, Y. H., Ko, Y. H., Lee, S. Y., Kim, H. C. and Jang, C. G. (2015) The new stimulant designer compound pentedrone exhibits rewarding properties and affects dopaminergic activity. Addict. Biol. [Epub ahead of print].
  15. Karila, L., Megarbane, B., Cottencin, O. and Lejoyeux, M. (2015) Synthetic cathinones: a new public health problem. Curr. Neuropharmacol. 13, 12-20. https://doi.org/10.2174/1570159X13666141210224137
  16. Karlsson, L., Andersson, M., Kronstrand, R. and Kugelberg, F. C. (2014) Mephedrone, methylone and 3, 4-methylenedioxypyrovalerone (MDPV) induce conditioned place preference in mice. Basic Clin. Pharmacol. Toxicol. 115, 411-416. https://doi.org/10.1111/bcpt.12253
  17. Koob, G. F. and Le Moal, M. (2002) Neurobiology of drug addiction. In Stages and pathways of drug involvement: examining the gateway hypothesis, pp. 337-361. Cambridge University Press, New York.
  18. Lagoja, I. M., Pannecouque, C., Van Aerschot, A., Witvrouw, M., Debyser, Z., Balzarini, J., Herdewijn, P. and De Clercq, E. (2003) Naminoimidazole derivatives inhibiting retroviral replication via a yet unidentified mode of action. J. Med. Chem. 46, 1546-1553. https://doi.org/10.1021/jm0211117
  19. Lisek, R., Xu, W., Yuvasheva, E., Chiu, Y. T., Reitz, A. B., Liu-Chen, L. Y. and Rawls, S. M. (2012) Mephedrone ('bath salt') elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend. 126, 257-262. https://doi.org/10.1016/j.drugalcdep.2012.04.021
  20. Meltzer, P. C., Butler, D., Deschamps, J. R. and Madras, B. K. (2006) 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J. Med. Chem. 49, 1420-1432. https://doi.org/10.1021/jm050797a
  21. Metzger, R. R., Haughey, H. M., Wilkins, D. G., Gibb, J. W., Hanson, G. R. and Fleckenstein, A. E. (2000) Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia. J. Pharmacol. Exp. Ther. 295, 1077-1085.
  22. Paillet-Loilier, M., Cesbron, A., Le Boisselier, R., Bourgine, J. and Debruyne, D. (2014) Emerging drugs of abuse: current perspectives on substituted cathinones. Subst. Abuse Rehabil. 5, 37-52.
  23. Prosser, J. M. and Nelson, L. S. (2012) The toxicology of bath salts: a review of synthetic cathinones. J. Med. Toxicol. 8, 33-42. https://doi.org/10.1007/s13181-011-0193-z
  24. Prus, A. J., James, J. R. and Rosecrans, J. A. (2009) Conditioned place preference. In Methods of Behavior Analysis in Neuroscience, vol.2, pp. 59-76.
  25. Rodriguez-Alarcon, G., Canales, J. and Salvador, A. (2007) Rewarding effects of 3, 4-methylenedioxymethamphetamine ("Ecstasy") in dominant and subordinate OF-1 mice in the place preference conditioning paradigm. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 191-199. https://doi.org/10.1016/j.pnpbp.2006.08.018
  26. Tampus, R., Yoon, S. S., de la Pena, J. B., Botanas, C. J., Kim, H. J., Seo, J. W., Jeong, E. J., Jang, C. G. and Cheong, J. H. (2015) Assessment of the abuse liability of synthetic cannabinoid agonists JWH-030, JWH-175, and JWH-176. Biomol. Ther. (Seoul) 23, 590-596. https://doi.org/10.4062/biomolther.2015.120
  27. VanGuilder, H. D., Vrana, K. E. and Freeman, W. M. (2008) Twentyfive years of quantitative PCR for gene expression analysis. Biotechniques 44, 619-626. https://doi.org/10.2144/000112776
  28. Watterson, L. R. and Olive, M. F. (2014) Synthetic cathinones and their rewarding and reinforcing effects in rodents. Adv. Neurosci. (Hindawi) 2014, 209875.
  29. Xu, P., Qiu, Y., Zhang, Y., Βai, Y., Xu, P., Liu, Y., Kim, J. H. and Shen, H. W. (2016) The Effects of 4-Methylethcathinone on Conditioned Place Preference, Locomotor Sensitization, and Anxiety-Like Behavior: A Comparison with Methamphetamine. Int. J. Neuropsychopharmacol. 19, pyv120. https://doi.org/10.1093/ijnp/pyv120
  30. Zakharova, E., Leoni, G., Kichko, I. and Izenwasser, S. (2009) Differential effects of methamphetamine and cocaine on conditioned place preference and locomotor activity in adult and adolescent male rats. Behav. Brain Res. 198, 45-50. https://doi.org/10.1016/j.bbr.2008.10.019
  31. Zhu, J. and Reith, M. (2008) Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurol. Disord. Drug Targets 7, 393-409. https://doi.org/10.2174/187152708786927877

Cited by

  1. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health vol.8, pp.1664-0640, 2017, https://doi.org/10.3389/fpsyt.2017.00156
  2. Blockade of TRPV1 Inhibits Methamphetamine-induced Rewarding Effects vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19207-2
  3. New designer phenethylamines 2C-C and 2C-P have abuse potential and induce neurotoxicity in rodents vol.95, pp.4, 2017, https://doi.org/10.1007/s00204-021-02980-x