References
- Adriani, W. and Laviola, G. (2003) Elevated levels of impulsivity and reduced place conditioning with d-amphetamine: two behavioral features of adolescence in mice. Behav. Neurosci. 117, 695-703. https://doi.org/10.1037/0735-7044.117.4.695
- Botanas, C. J., de la Pena, J. B., Dela Pena, I. J., Tampus, R., Yoon, R., Kim, H.J., Lee, Y. S., Jang, C. G. and Cheong, J. H. (2015) Methoxetamine, a ketamine derivative, produced conditioned place preference and was self-administered by rats: evidence of its abuse potential. Pharmacol. Biochem. Behav. 133, 31-36. https://doi.org/10.1016/j.pbb.2015.03.007
- Botanas, C. J., Yoon, S. S., de la Peña, J. B., dela Peña, I. J., Kim, M., Woo, T., Seo, J. W., Jang, C. G., Park, K. T., Lee, Y.H., Lee, Y. S., Kim, H. J. and Cheong, J. H. (2017) A novel synthetic cathinone, 2-(methylamino)-1-(naphthalen-2-yl) propan-1-one (BMAPN), produced rewarding effects and altered striatal dopamine-related gene expression in mice. Behav. Brain. Res. 317, 494-501. https://doi.org/10.1016/j.bbr.2016.10.016
- Brandt, S. D., Freeman, S., Sumnall, H. R., Measham, F. and Cole, J. (2011) Analysis of NRG 'legal highs' in the UK: identification and formation of novel cathinones. Drug Test. Anal. 3, 569-575. https://doi.org/10.1002/dta.204
- Carroll, F., Lewin, A. H., Mascarella, S. W., Seltzman, H. H. and Reddy, P. A. (2012) Designer drugs: a medicinal chemistry perspective. Ann. N. Y. Acad. Sci. 1248, 18-38. https://doi.org/10.1111/j.1749-6632.2011.06199.x
- Coppola, M. and Mondola, R. (2012) Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as "bath salts" or "plant food". Toxicol. Lett. 211, 144-149. https://doi.org/10.1016/j.toxlet.2012.03.009
-
de la Pena, J. B., Lee, H. C., Ike, C., Woo, T. S., Yoon, S. Y., Lee, H. L., Han, J. S., Lee, J. I., Cho, Y. J., Shin, C. Y. and Cheong, J. H. (2012) Rewarding and reinforcing effects of the NMDA receptor antagonist-benzodiazepine combination,
$zoletil^{(R)}$ : Difference between acute and repeated exposure. Behav. Brain Res. 233, 434-442. https://doi.org/10.1016/j.bbr.2012.05.038 - European Monitoring Centre for Drugs and Drug Addiction (2015) Injection of synthetic cathinones [cited 2016 Sep 25]. Available from: http://www.emcdda.europa.eu/topics/pods/synthetic-cathinonesinjection/.
- Everitt, B. J. and Robbins, T. W. (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37, 1946-1954. https://doi.org/10.1016/j.neubiorev.2013.02.010
- Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M., Jing, X., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M. and Gratzel, M. (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130, 10720-10728. https://doi.org/10.1021/ja801942j
- Gatch, M. B., Taylor, C. M. and Forster, M. J. (2013) Locomotor stimulant and discriminative stimulus effects of 'bath salt' cathinones. Behav. Pharmacol. 24, 437-447. https://doi.org/10.1097/FBP.0b013e328364166d
- German, C. L., Fleckenstein, A. E. and Hanson, G. R. (2014) Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci. 97, 2-8. https://doi.org/10.1016/j.lfs.2013.07.023
- Goldstein, R. Z. and Volkow, N. D. (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642-1652. https://doi.org/10.1176/appi.ajp.159.10.1642
- Hwang, J. Y., Kim, J. S., Oh, J. H., Hong, S. I., Ma, S. X., Jung, Y. H., Ko, Y. H., Lee, S. Y., Kim, H. C. and Jang, C. G. (2015) The new stimulant designer compound pentedrone exhibits rewarding properties and affects dopaminergic activity. Addict. Biol. [Epub ahead of print].
- Karila, L., Megarbane, B., Cottencin, O. and Lejoyeux, M. (2015) Synthetic cathinones: a new public health problem. Curr. Neuropharmacol. 13, 12-20. https://doi.org/10.2174/1570159X13666141210224137
- Karlsson, L., Andersson, M., Kronstrand, R. and Kugelberg, F. C. (2014) Mephedrone, methylone and 3, 4-methylenedioxypyrovalerone (MDPV) induce conditioned place preference in mice. Basic Clin. Pharmacol. Toxicol. 115, 411-416. https://doi.org/10.1111/bcpt.12253
- Koob, G. F. and Le Moal, M. (2002) Neurobiology of drug addiction. In Stages and pathways of drug involvement: examining the gateway hypothesis, pp. 337-361. Cambridge University Press, New York.
- Lagoja, I. M., Pannecouque, C., Van Aerschot, A., Witvrouw, M., Debyser, Z., Balzarini, J., Herdewijn, P. and De Clercq, E. (2003) Naminoimidazole derivatives inhibiting retroviral replication via a yet unidentified mode of action. J. Med. Chem. 46, 1546-1553. https://doi.org/10.1021/jm0211117
- Lisek, R., Xu, W., Yuvasheva, E., Chiu, Y. T., Reitz, A. B., Liu-Chen, L. Y. and Rawls, S. M. (2012) Mephedrone ('bath salt') elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend. 126, 257-262. https://doi.org/10.1016/j.drugalcdep.2012.04.021
- Meltzer, P. C., Butler, D., Deschamps, J. R. and Madras, B. K. (2006) 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J. Med. Chem. 49, 1420-1432. https://doi.org/10.1021/jm050797a
- Metzger, R. R., Haughey, H. M., Wilkins, D. G., Gibb, J. W., Hanson, G. R. and Fleckenstein, A. E. (2000) Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia. J. Pharmacol. Exp. Ther. 295, 1077-1085.
- Paillet-Loilier, M., Cesbron, A., Le Boisselier, R., Bourgine, J. and Debruyne, D. (2014) Emerging drugs of abuse: current perspectives on substituted cathinones. Subst. Abuse Rehabil. 5, 37-52.
- Prosser, J. M. and Nelson, L. S. (2012) The toxicology of bath salts: a review of synthetic cathinones. J. Med. Toxicol. 8, 33-42. https://doi.org/10.1007/s13181-011-0193-z
- Prus, A. J., James, J. R. and Rosecrans, J. A. (2009) Conditioned place preference. In Methods of Behavior Analysis in Neuroscience, vol.2, pp. 59-76.
- Rodriguez-Alarcon, G., Canales, J. and Salvador, A. (2007) Rewarding effects of 3, 4-methylenedioxymethamphetamine ("Ecstasy") in dominant and subordinate OF-1 mice in the place preference conditioning paradigm. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 191-199. https://doi.org/10.1016/j.pnpbp.2006.08.018
- Tampus, R., Yoon, S. S., de la Pena, J. B., Botanas, C. J., Kim, H. J., Seo, J. W., Jeong, E. J., Jang, C. G. and Cheong, J. H. (2015) Assessment of the abuse liability of synthetic cannabinoid agonists JWH-030, JWH-175, and JWH-176. Biomol. Ther. (Seoul) 23, 590-596. https://doi.org/10.4062/biomolther.2015.120
- VanGuilder, H. D., Vrana, K. E. and Freeman, W. M. (2008) Twentyfive years of quantitative PCR for gene expression analysis. Biotechniques 44, 619-626. https://doi.org/10.2144/000112776
- Watterson, L. R. and Olive, M. F. (2014) Synthetic cathinones and their rewarding and reinforcing effects in rodents. Adv. Neurosci. (Hindawi) 2014, 209875.
- Xu, P., Qiu, Y., Zhang, Y., Βai, Y., Xu, P., Liu, Y., Kim, J. H. and Shen, H. W. (2016) The Effects of 4-Methylethcathinone on Conditioned Place Preference, Locomotor Sensitization, and Anxiety-Like Behavior: A Comparison with Methamphetamine. Int. J. Neuropsychopharmacol. 19, pyv120. https://doi.org/10.1093/ijnp/pyv120
- Zakharova, E., Leoni, G., Kichko, I. and Izenwasser, S. (2009) Differential effects of methamphetamine and cocaine on conditioned place preference and locomotor activity in adult and adolescent male rats. Behav. Brain Res. 198, 45-50. https://doi.org/10.1016/j.bbr.2008.10.019
- Zhu, J. and Reith, M. (2008) Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurol. Disord. Drug Targets 7, 393-409. https://doi.org/10.2174/187152708786927877
Cited by
- Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health vol.8, pp.1664-0640, 2017, https://doi.org/10.3389/fpsyt.2017.00156
- Blockade of TRPV1 Inhibits Methamphetamine-induced Rewarding Effects vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19207-2
- New designer phenethylamines 2C-C and 2C-P have abuse potential and induce neurotoxicity in rodents vol.95, pp.4, 2017, https://doi.org/10.1007/s00204-021-02980-x