DOI QR코드

DOI QR Code

Fetal and preterm infant microbiomes: a new perspective of necrotizing enterocolitis

  • Choi, Yong-Sung (Department of Pediatrics, Kyung Hee University School of Medicine) ;
  • Song, In Gyu (Department of Pediatrics, Kyung Hee University School of Medicine)
  • Received : 2017.06.06
  • Accepted : 2017.09.17
  • Published : 2017.10.15

Abstract

Necrotizing enterocolitis (NEC) is a devastating condition of hospitalized preterm infants. Numerous studies have attempted to identify the cause of NEC by examining the immunological features associated with pathogenic microorganisms. No single organism has proven responsible for the disease; however, immunological studies are now focused on the microbiome. Recent research has investigated the numerous bacterial species residing in the body and their role in diseases in preterm infants. The timing of initial microbial colonization is a subject of interest. The microbiome appears to transfer from the mother to the newborn, as well as to the fetus. Cross-talk between the fetus and fetal microbiome takes place continuously to generate a unique immune system. This review examined the transfer of the microbiome to the human fetus, and its potential relationship with NEC.

Keywords

References

  1. Gilbert JA, Dupont CL. Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 2011;3:347-71. https://doi.org/10.1146/annurev-marine-120709-142811
  2. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14. https://doi.org/10.1038/nature11234
  3. Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv Immunol 2010;107:243-74.
  4. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688-93. https://doi.org/10.1038/sj.embor.7400731
  5. Goncalves LF, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev 2002;8:3-13. https://doi.org/10.1002/mrdd.10008
  6. Madianos PN, Bobetsis YA, Offenbacher S. Adverse pregnancy outcomes (APOs) and periodontal disease: pathogenic mechanisms. J Periodontol 2013;84(4 Suppl):S170-80. https://doi.org/10.1902/jop.2012.110638
  7. Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis 2013;4:203-14. https://doi.org/10.1017/S2040174412000712
  8. Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017;5:48. https://doi.org/10.1186/s40168-017-0268-4
  9. Prince AL, Antony KM, Chu DM, Aagaard KM. The microbiome, parturition, and timing of birth: more questions than answers. J Reprod Immunol 2014;104-105:12-9. https://doi.org/10.1016/j.jri.2014.03.006
  10. Jimenez E, Fernandez L, Marin ML, Martin R, Odriozola JM, Nueno-Palop C, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 2005;51:270-4. https://doi.org/10.1007/s00284-005-0020-3
  11. Jimenez E, Marin ML, Martin R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol 2008;159:187-93. https://doi.org/10.1016/j.resmic.2007.12.007
  12. Jones HE, Harris KA, Azizia M, Bank L, Carpenter B, Hartley JC, et al. Differing prevalence and diversity of bacterial species in fetal membranes from very preterm and term labor. PLoS One 2009;4:e8205. https://doi.org/10.1371/journal.pone.0008205
  13. Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 2009;48:8-12. https://doi.org/10.1111/j.1472-765X.2008.02475.x
  14. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014;6:237ra65. https://doi.org/10.1126/scitranslmed.3008599
  15. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016;6:23129. https://doi.org/10.1038/srep23129
  16. Doyle RM, Alber DG, Jones HE, Harris K, Fitzgerald F, Peebles D, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta 2014;35:1099-101. https://doi.org/10.1016/j.placenta.2014.10.007
  17. Amarasekara R, Jayasekara RW, Senanayake H, Dissanayake VH. Microbiome of the placenta in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia. J Obstet Gynaecol Res 2015;41:662-9. https://doi.org/10.1111/jog.12619
  18. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol 2013;11:e1001631. https://doi.org/10.1371/journal.pbio.1001631
  19. Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 2007;119:e724-32. https://doi.org/10.1542/peds.2006-1649
  20. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol 2016;16:86. https://doi.org/10.1186/s12876-016-0498-0
  21. Gregory KE, Samuel BS, Houghteling P, Shan G, Ausubel FM, Sadreyev RI, et al. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome 2016;4:68. https://doi.org/10.1186/s40168-016-0214-x
  22. Cong X, Judge M, Xu W, Diallo A, Janton S, Brownell EA, et al. Influence of feeding type on gut microbiome development in hospitalized preterm infants. Nurs Res 2017;66:123-33. https://doi.org/10.1097/NNR.0000000000000208
  23. Zeissig S, Blumberg RS. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol 2014;15:307-10. https://doi.org/10.1038/ni.2847
  24. ESPGHAN Committee on Nutrition, Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, et al. Breast-feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 2009;49:112-25. https://doi.org/10.1097/MPG.0b013e31819f1e05
  25. McGuire W, Anthony MY. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: systematic review. Arch Dis Child Fetal Neonatal Ed 2003;88:F11-4. https://doi.org/10.1136/fn.88.1.F11
  26. Rautava S, Walker WA. Academy of Breastfeeding Medicine founder's lecture 2008: breastfeeding--an extrauterine link between mother and child. Breastfeed Med 2009;4:3-10. https://doi.org/10.1089/bfm.2009.0004
  27. Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med 2015;372:331-40. https://doi.org/10.1056/NEJMoa1403489
  28. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 1978;187:1-7. https://doi.org/10.1097/00000658-197801000-00001
  29. Gordon P, Christensen R, Weitkamp JH, Maheshwari A. Mapping the New World of Necrotizing Enterocolitis (NEC): Review and Opinion. EJ Neonatol Res 2012;2:145-72.
  30. Lucas A, Cole TJ. Breast milk and neonatal necrotising enterocolitis. Lancet 1990;336:1519-23. https://doi.org/10.1016/0140-6736(90)93304-8
  31. Neu J, Pammi M. Pathogenesis of NEC: Impact of an altered intestinal microbiome. Semin Perinatol 2017;41:29-35. https://doi.org/10.1053/j.semperi.2016.09.015
  32. Pammi M, Cope J, Tarr PI, Warner BB, Morrow AL, Mai V, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 2017;5:31. https://doi.org/10.1186/s40168-017-0248-8
  33. Sjogren YM, Tomicic S, Lundberg A, Bottcher MF, Bjorksten B, Sverremark-Ekstrom E, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy 2009;39:1842-51. https://doi.org/10.1111/j.1365-2222.2009.03326.x
  34. Singh VV, Chauhan SK, Rai R, Kumar A, Rai G. Decreased toll-like receptor-4/myeloid differentiation factor 88 response leads to defective interleukin-$1{\beta}$ production in term low birth weight newborns. Pediatr Infect Dis J 2014;33:1270-6. https://doi.org/10.1097/INF.0000000000000416
  35. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229-41. https://doi.org/10.1016/j.cell.2004.07.002
  36. Lu P, Sodhi CP, Hackam DJ. Toll-like receptor regulation of intestinal development and inflammation in the pathogenesis of necrotizing enterocolitis. Pathophysiology 2014;21:81-93. https://doi.org/10.1016/j.pathophys.2013.11.007
  37. Jiang HQ, Thurnheer MC, Zuercher AW, Boiko NV, Bos NA, Cebra JJ. Interactions of commensal gut microbes with subsets of B- and T-cells in the murine host. Vaccine 2004;22:805-11. https://doi.org/10.1016/j.vaccine.2003.11.022
  38. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012;149:1578-93. https://doi.org/10.1016/j.cell.2012.04.037
  39. Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol 2011;4:598-602. https://doi.org/10.1038/mi.2011.37
  40. Mirpuri J, Raetz M, Sturge CR, Wilhelm CL, Benson A, Savani RC, et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 2014;5:28-39. https://doi.org/10.4161/gmic.26489
  41. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997;159:1739-45.
  42. Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 2009;3:944-54. https://doi.org/10.1038/ismej.2009.37
  43. Morrow AL, Lagomarcino AJ, Schibler KR, Taft DH, Yu Z, Wang B, et al. Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome 2013;1:13. https://doi.org/10.1186/2049-2618-1-13
  44. Hourigan SK, Ta A, Wong WS, Clemency NC, Provenzano MG, Baveja R, et al. The microbiome in necrotizing enterocolitis: a case report in twins and minireview. Clin Ther 2016;38:747-53. https://doi.org/10.1016/j.clinthera.2016.02.014
  45. McMurtry VE, Gupta RW, Tran L, Blanchard EE 4th, Penn D, Taylor CM, et al. Bacterial diversity and Clostridia abundance decrease with increasing severity of necrotizing enterocolitis. Microbiome 2015;3:11. https://doi.org/10.1186/s40168-015-0075-8
  46. Sookoian S, Gianotti TF, Burgueno AL, Pirola CJ. Fetal metabolic programming and epigenetic modifications: a systems biology approach. Pediatr Res 2013;73(4 Pt 2):531-42. https://doi.org/10.1038/pr.2013.2
  47. Toure DM, ElRayes W, Barnes-Josiah D, Hartman T, Klinkebiel D, Baccaglini L. Epigenetic modifications of human placenta associated with preterm birth: a systematic review. J Matern Fetal Neonatal Med 2017:1-12 [Epub]. https://doi.org/10.1080/14767058.2017.1291620.
  48. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour-epigenetic regulation of the gut-brain axis. Genes Brain Behav 2014; 1369-86.
  49. Yiu TT, Li W. Pediatric cancer epigenome and the influence of folate. Epigenomics 2015;7:961-73. https://doi.org/10.2217/epi.15.42
  50. Hagood JS. Beyond the genome: epigenetic mechanisms in lung remodeling. Physiology (Bethesda) 2014;29:177-85.
  51. Gao F, Zhang J, Jiang P, Gong D, Wang JW, Xia Y, et al. Marked methylation changes in intestinal genes during the perinatal period of preterm neonates. BMC Genomics 2014;15:716. https://doi.org/10.1186/1471-2164-15-716
  52. Kumar H, Lund R, Laiho A, Lundelin K, Ley RE, Isolauri E, et al. Gut microbiota as an epigenetic regulator: pilot study based on wholegenome methylation analysis. MBio 2014;5: e02113-14.
  53. Cortese R, Lu L, Yu Y, Ruden D, Claud EC. Epigenome-Microbiome crosstalk: A potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 2016;11:205-15. https://doi.org/10.1080/15592294.2016.1155011

Cited by

  1. Feeding the preterm infant: an overview of the evidence vol.72, pp.1, 2017, https://doi.org/10.1080/09637486.2020.1754352