DOI QR코드

DOI QR Code

지방산 조성 비율이 다른 유기농 사료 급여가 홀스타인 원유의 CLA 및 지방산 함량에 미치는 영양

Effects of Feeding Organic Diets with Different Fatty Acid Composition Ratio on CLA and Fatty Acid Contents in Raw Milk of Holstein-Friesian Dairy Cows

  • 남인식 (한경대학교 고품질친환경축산연구센터) ;
  • 임양천 ((주)오린, 한경대학교 동물생명환경과학과) ;
  • 남기택 (한경대학교 동물생명환경과학과)
  • 투고 : 2017.01.13
  • 심사 : 2017.02.02
  • 발행 : 2017.02.28

초록

본 연구는 지방산 함량 및 배합사료와 조사료 비율을 기초로 한 유기농 사료 급여가 홀스타인 착유우에서 생산된 원유의 CLA 및 지방산 함량에 미치는 연구를 조사하기 위한 목적으로 실시하였다. 총 290두의 홀스타인 착유우를 산차 및 유량에 따라 3개 group으로 나누었다. 대조구는 C16:00, C18:2 그리고 SFA를 높게 설계하였고, 처리구 1은 C18:1, C18:2 그리고 UFA 함량을 높게 설계하였으며 처리구 2는 MUFA, C18:3 그리고 PUFA 함량을 높게 설계하였다. 결과를 요약하면 다음과 같다. 유기농 원유 내 C16:0 함량은 처리구 2에서 가장 높은 것으로 나타났다(p<0.05). 그 이유는 반추위 내 미생물의 de novo 생합성 때문인 것으로 판단된다. 처리구 2의 C18:0 함량은 7.92%로 대조구(11.39%)와 처리구 1(10.88%)보다 높았다(p<0.05). CLA 함량도 처리구 2가 처리구 1이나 대조구에 비하여 높은 것으로 나타났다(p<0.05). 원유 내에서 검출된 대부분의 CLA는 착유우 유선조직내의 ${\Delta}^9$-desaturase에 의하여 합성된 것으로 판단된다. n-3/n-6 비율도 처리구 2에서 가장 높은 것으로 나타났다(p<0.05). 본 연구 결과를 종합해 보면, 착유우에게 혼합 목건초 등을 급여하면 CLA, n-3 농도는 증가하며 C18:0 농도는 낮아지는 것으로 조사되었다. 본 연구는 유기농 인증된 조사료 및 농후사료를 이용하여 결과를 도출하였다. 그러나 유기농 사료를 사용할 경우에만 원유 내 CLA 및 n-3 농도는 증가한다고 볼 수 없다. 원유 내 고농도의 CLA 및 n-3 지방산 생산을 위해서는 반추위 미생물 및 유선세포의 지방 대사를 통한 CLA 생산 메커니즘에 대한 충분한 이해와 급여 사료 내 지방산 구성 등이 중요한 것으로 판단된다.

The aim of this study was to determine the effects of feeding of different organic diets (based on fatty acid contents) on CLA and fatty acid concentration of raw milk. Total two hundred and ninety Holstein cows were divided into control, treatment 1 and treatment 2 groups according to the parity and milk yield. Control diet was contained higher C16:00, C18:2 and SFA. Treatment 1 diet was higher in C18:1, C18:2, UFA and treatment 2 diet was higher in MUFA and C18:3 and PUFA. The results indicated that the C16:0 concentration in raw milk was greater in the group of treatment 2 than in control and treatment 1 (p<0.05). The concentration of CLA in treatment 2 was higher compared to treatment 1 and control groups (p<0.05). The ration of n-3/n-6 was higher in treatment 2 group compared with control and treatment 1 (p<0.05). In conclusion, feeding 100% of grass feed for dairy cows increases CLA and n-3 content in milk. From now on, basis on our study, development of functional milk will increase a health of children and old people.

키워드

참고문헌

  1. A. O. A. C. 1995. Official method of analysis (16th Ed). Association of Official Analytical Chemists Washington, D. C.
  2. Barcelo-Coblijn, G. and E. Murphy. 2009. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acid: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog. Lipid Res. 48: 355-374. https://doi.org/10.1016/j.plipres.2009.07.002
  3. Bauman, D. E., L. H. Baumgard., B. A Corl, and J. M. Griinari. 2001. Conjugated linoleic acid (CLA) and the dairy cow, In: Garnsworthy, P. C. and J. Wiseman. (Eds.). Recent Advances in Animal Nutrition. Nottingham University Press. Nottingham, pp. 221-250.
  4. Blankson, H., J. A. Stakkestad., H. Fagertun., E. Thom., J. Wadstein, and O. Gudmundsen. 2000. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 130: 2943-2948. https://doi.org/10.1093/jn/130.12.2943
  5. Chilliard, Y., A. Ferlat, and M. Doreau. 2001. Effect of different type of forages, animal fed or marine oils in cow's diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livest. Prod. Sci. 70: 31-48. https://doi.org/10.1016/S0301-6226(01)00196-8
  6. Chin, S. F., W. Liu., J. M. Storkson., Y. L. Ha, and M. W. Pariza. 1992. Dietary source of dienoic isomers of linoleic acid, a newly recognized class of anticarcinogins. J. Food Compos. Anal. 5: 185-179. https://doi.org/10.1016/0889-1575(92)90037-K
  7. Hara, A. and N. S. Radin. 1978. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90: 420-426. https://doi.org/10.1016/0003-2697(78)90046-5
  8. Harfoot, C. G. and G. P. Hazlewood. 1988. Lipid metabolism in the rumen. In The rumen microbial ecosystem (Ed. P.M. Hobson). Elsevier Applied Science. London and New York, pp. 285-322.
  9. Hazlewood, G. P., P. Kemp., D. Lander, and R. M. C. Dawson. 1976. $C_{18}$ unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolysis xogenous phopho lipid. Br. J. Nutr. 35: 293-297. https://doi.org/10.1079/BJN19760034
  10. Houseknecht, J. M., J. P. Vanden Heuvel, C. P Moya-Carnarena, L. Portocarrero, L. W. Peck., K. P. Nickel, and M. A. Belury. 1998 Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the zucker diabetic fatty fa/farat. Biochem. Biophys. Res. Commun. 244: 678-682. https://doi.org/10.1006/bbrc.1998.8303
  11. Kemp, P. and D. J. Lander. 1984. Hydrogenation in vitro of ${\alpha}$-linolenic acid to stearic acid by mixed culture of pure strains of rumen bacteria. J. Gen. Microbiol. 130: 527-533
  12. Kemp, P., R. W. White, and D. J. Lander. 1975. The hydrogenation of unsaturated fatty acids by five bacterial isolated from the sheep rumen, including a new species. J. Gen. Microbiol. 90: 100-114. https://doi.org/10.1099/00221287-90-1-100
  13. Kim, E. J., J. G. Jun., H. S. Park., S. M. Kim., Y. L. Ha, and J. H. Park. 2002. Conjugated linoleic acid (CLA) inhibits growth of Caco-2 colon cancer cells: Possible mediation by oleamide. Anticancer Res. 22: 2193-2197.
  14. Knight, P., J. D. Sutton., J. E. Storry, and P. E. Brumby. 1979. Rumen microbial synthesis of long chain fatty acids. Proceedings of the Nutrition Society 38: 4A.
  15. Liew, C., H. A. J. Schut., S. F. Chin., M. W. Pariza, and R. H. Dashwood. 1995. Protection of conjugated linoleic acid against 2-amino-3methylimidazo[4,5-f] quinoline-induced colon carcinogenesis in the F344 rat: a study of inhibitory mechanisms. Carcinogenesis 16: 3037- 3043 https://doi.org/10.1093/carcin/16.12.3037
  16. Lock, A. L. and P. C. Garnsworthy. 2003. Seasonal variation in milk conjugated linoleic acid and ${\Delta}^9$-desaturase activity in dairy cows. Livest. Prod. Sci. 79: 47-59. https://doi.org/10.1016/S0301-6226(02)00118-5
  17. Nam, I. S. and P. C. Garnsworthy. 2007. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Appl. Microbiol. 103: 551-556. https://doi.org/10.1111/j.1365-2672.2007.03317.x
  18. Nicolosi, R. J., E. J. Rogers., D. Kritchevsky., J. A. Scimeca, and P. J. Huth. 1997. Dietary conjugated linoleic acid reduce plasma lipoprotein and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 22: 266-277.
  19. Palmquist, D. L. and T. C. Jenkins. 1980. Fats in lactation rations. J. Dairy Sci. 63: 1-14. https://doi.org/10.3168/jds.S0022-0302(80)82881-5
  20. SAS. 2002. SAS User's Guide. Statistics, Version 8.0 Edition. SAS Instute. Inc. Cary, N. C.
  21. Sugano, M., A. Tsujita., M. Yamasaki., M. Noguchi, and K. Yamada. 1998. Conjugated linoleic acid modulates tissues levels of chemical mediators and immunoglobulins in rats. Lipids 33: 521-527. https://doi.org/10.1007/s11745-998-0236-4
  22. Van Soest, P. J., J. B. Robertson, and B. A. Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3592.. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  23. William, E., M. D. Connor, and L. Sonja. 2000. The importance of N-3 fatty acid in health and disease. IIFET Proceeding.