DOI QR코드

DOI QR Code

Recent Progress on Metal-Organic Framework Membranes for Gas Separations: Conventional Synthesis vs. Microwave-Assisted Synthesis

기체분리용 금속유기구조체 분리막의 최근 연구 동향 및 성과

  • Received : 2017.02.14
  • Accepted : 2017.02.22
  • Published : 2017.02.28

Abstract

Metal-organic frameworks (MOFs) are nanoporous materials that consist of organic and inorganic moieties, with well-defined crystalline lattices and pore structures. With a judicious choice of organic linkers present in the MOFs with different sizes and chemical groups, MOFs exhibit a wide variety of pore sizes and chemical/physical properties. This makes MOFs extremely attractive as novel membrane materials for gas separation applications. However, the synthesis of high-quality MOF thin films and membranes is quite challenging due to difficulties in controlling the heterogeneous nucleation/growth and achieving strong attachment of films on porous supports. Microwave-based synthesis technology has made tremendous progress in the last two decades and has been utilized to overcome some of these challenges associated with MOF membrane fabrication. The advantages of microwaves as opposed to conventional synthesis techniques for MOFs include shorter synthesis times, ability to achieve unique and complex structures and crystal size reductions. Here, we review the recent progress on the synthesis of MOF thin films and membranes with an emphasis on how microwaves have been utilized in the synthesis, improved properties achieved and gas separation performance of these films and membranes.

금속유기구조체(metal-organic framework)는 유기물와 무기물로 구성된 나노다공성 결정물질로서 일정한 세공 구조를 가지고 있다. 합성시 유기 리간드의 다양한 선택이 가능함으로 인해 다양한 세공 사이즈와 물리적/화학적 성질들을 나타내는 금속유기구조체가 가능하다. 이러한 특성들로 인해 다공성 금속유기구조체는 새로운 기체분리용 막 재료로 각광받고 있다. 그러나 고품질의 다결정 금속유기구조체막을 재조하는 것은 상당히 어려운 일인데, 이것은 지지체 표면에 금속유기구조체 결정을 자라게 하는 것이 쉽지 않기 때문이다. 지난 이십여 년 동안 마이크로 전자파를 이용한 물질 합성에 대한 연구가 상당히 진행되었는데 특히 마이크로 전자파를 이용하면 전통적인 합성법에 비해 금속유기구조체 분리막을 제조하는 과정에서의 어려움들을 극복할 수 있다. 마이크로 전자파를 이용한 다결정 분리막 제조 공정은 단시간 합성, 복잡한 구조체 합성 및 나노 결정체 합성 등의 장점이 있다. 본 총설에서는 금속유기구조체 분리막 제조 및 기체 분리에 관한 최근 연구성과들을 살펴보고 특히 마이크로 전자파를 이용한 분리막 제조 공정을 중심으로 정리한다.

Keywords

Acknowledgement

Supported by : National Science Foundation, Qatar National Research Fund

References

  1. D. E. Sanders, Z. P. Smith, R. L. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, and B. D. Freeman, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  2. "Materials for Separation Technology: Energy and Emission Reduction Opportunities", US Department of Energy (2004).
  3. F. G. Kerry, "Industrial Gas Handbook: Gas Separation and Purification", CRC Press, Boca Raton (2007).
  4. A. R. Smith and J. Klosek, "A review of air separation technologies and their integration with energy conversion processes", Fuel Process. Technol., 70, 115 (2001). https://doi.org/10.1016/S0378-3820(01)00131-X
  5. "Handbook of Compressed Gases", 4th ed ed., Kluwer Academic Publishers, Norwell, MA (1999).
  6. H. Gunardson, "Industrial Gases in Petrochemical Processing: Chemical Industries", Marcel Dekker, Inc., New York (1998).
  7. K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, "Reversible chemisorbents for carbon dioxide and their potential applications", Ind. Eng. Chem. Res., 47, 8048 (2008). https://doi.org/10.1021/ie800795y
  8. L. Barelli, G. Bidini, F. Gallorini, and S. Servili, "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review", Energy, 33, 554 (2008). https://doi.org/10.1016/j.energy.2007.10.018
  9. A. J. Kidnay and W. R. Parrish "Fundamentals of Natural Gas Processing", CRC Press, Boca Raton (2006).
  10. T. D. Burchell, R. R. Judkins, M. R. Rogers, and A. M. Williams, "A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures", Carbon, 35, 1279 (1997). https://doi.org/10.1016/S0008-6223(97)00077-8
  11. H. C. Cheng and F. B. Hill, "Recovery and Purification of Light Gases by Pressure Swing Adsorption", American Chemical Society, Washington, D.C (1983).
  12. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, "Advancesn in CO(2) capture technology - The US department of energy's carbon sequestration program", Int. J. Greenh. Gas Control, 2, 9 (2008). https://doi.org/10.1016/S1750-5836(07)00094-1
  13. D. Aaron and C. Tsouris, "Separation of $CO_2$ from flue gas: A review", Sep. Sci. Technol., 40, 321 (2005). https://doi.org/10.1081/SS-200042244
  14. K. Scoth, "Handbook of Industrial Membranes", 2nd ed ed., Elsevier (1999).
  15. M. T. Ravanchi, T. Kaghazchi, and A. Kargari, "Application of membrane separation processes in petrochemical industry: A review", Desalination, 235, 199 (2009). https://doi.org/10.1016/j.desal.2007.10.042
  16. R. W. Baker and K. Lokhandwala, "Natural gas processing with membranes: An overview", Ind. Eng. Chem. Res., 47, 2109 (2008). https://doi.org/10.1021/ie071083w
  17. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  18. R. W. Baker, "Membrane Technology and Applications", John Wiley & Sons, Ltd, Chichester (2004).
  19. P. Bernardo and E. Drioli, "Membrane gas separation progresses for process intensification strategy in the petrochemical industry", Petrol. Chem., 50, 271 (2010). https://doi.org/10.1134/S0965544110040043
  20. R. W. Spillman, "Economics of gas separation membranes", Chem. Eng. Prog., 85, 41 (1989).
  21. R. Prasad, R. L. Shaner, and K. J. Doshi, "Comparison of Membranes with other Gas Separation Technologies", CRC Press, Boca Raton (1994).
  22. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  23. R. L. Burns and W. J. Koros, "Defining the challenges for $C_3H_6/C_3H_8$ separation using polymeric membranes", J. Membr. Sci., 211, 299 (2003). https://doi.org/10.1016/S0376-7388(02)00430-1
  24. M. L. Chng, Y. C. Xiao, T. S. Chung, M. Toriida, and S. Tamai, "Enhanced propylene/propane separation by carbonaceous membrane derived from poly (aryl ether ketone)/2,6-bis(4-azidobenzylidene)-4-methyl-cyclohexanone interpenetrating network", Carbon, 47, 1857 (2009). https://doi.org/10.1016/j.carbon.2009.03.032
  25. K. Okamoto, S. Kawamura, M. Yoshino, H. Kita, Y. Hirayama, N. Tanihara, and Y. Kusuki, "Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane", Ind. Eng. Chem. Res., 38, 4424 (1999). https://doi.org/10.1021/ie990209p
  26. J. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, S. Morooka, and S. H. Suh, "Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp'ODA polyimide membrane", Ind. Eng. Chem. Res., 35, 4176 (1996). https://doi.org/10.1021/ie960264n
  27. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  28. I. G. Giannakopoulos and V. Nikolakis, "Separation of propylene/propane mixtures using faujasite-type zeolite membranes", Ind. Eng. Chem. Res., 44, 226 (2005). https://doi.org/10.1021/ie049508r
  29. M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902 (1999). https://doi.org/10.1126/science.285.5435.1902
  30. J. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, and S. Morooka, "Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon", J. Membr. Sci., 124, 243 (1997). https://doi.org/10.1016/S0376-7388(96)00250-5
  31. S. S. Wang, M. Y. Zeng, and Z. H. Wang, "Asymmetric molecular sieve carbon membranes", J. Membr. Sci., 109, 267 (1996). https://doi.org/10.1016/0376-7388(95)00205-7
  32. H. Suda and K. Haraya, "Molecular-sieving effect of carbonized kapton polyimide membrane", J. Chem. Soc., Chem. Commun., 17, 1179 (1995)
  33. C. W. Jones and W. J. Koros, "Carbon molecularsieve gas separation membranes-II. regeneration following organic-exposure", Carbon, 32, 1427 (1994). https://doi.org/10.1016/0008-6223(94)90136-8
  34. H. Hatori, Y. Yamada, M. Shiraishi, H. Nakata, and S. Yoshitomi, "Carbon molecular-sieve films from polyimide", Carbon, 30, 305 (1992). https://doi.org/10.1016/0008-6223(92)90095-E
  35. J. E. Koresh and A. Sofer, "Molecular-sieve carbon permselective membrane .1. presentation of a new device for gas-mixture separation", Sep. Sci. Technol., 18, 723 (1983). https://doi.org/10.1080/01496398308068576
  36. C. Liu, S. Kulprathipanja, and S. Wilson, "High Flux Mixed Matrix Membranes for Separations", US Patent 20070209505 A1, Sep 13 (2007).
  37. I. G. Giannakopoulos and V. Nikolakis, "Recovery of hydrocarbons from mixtures containing $C_3H_6,\;C_3H_8\;and\;N_2$ using NaX membranes", J. Membr. Sci., 305, 332 (2007). https://doi.org/10.1016/j.memsci.2007.08.023
  38. T. B. Merkel, R. Blanc, J. Zeid, A. Suwarlim, B. Firat, H. Wijmans, M. Asaro, and M. Greene, "Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membranes", US Department of Energy (2007).
  39. S. W. Kang, J. H. Kim, K. Char, J. Won, and Y. S. Kang, "Nanocomposite silver polymer electrolytes as facilitated olefin transport membranes", J. Membr. Sci., 285, 102 (2006). https://doi.org/10.1016/j.memsci.2006.08.005
  40. T. J. Kim, B. A. Li, and M. B. Hagg, "Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture", J. Polym. Sci. Pol. Phys., 42, 4326 (2004). https://doi.org/10.1002/polb.20282
  41. A. S. Kovvali and K. K. Sirkar, "Dendrimer liquid membranes: CO(2) separation from gas mixtures", Ind. Eng. Chem. Res., 40, 2502 (2001). https://doi.org/10.1021/ie0010520
  42. J. D. Way, R. D. Noble, D. L. Reed, G. M. Ginley, and L. A. Jarr, "Facilitated transport of $CO_2$ in ion-exchange membranes", AIChE J., 33, 480 (1987). https://doi.org/10.1002/aic.690330313
  43. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  44. R. L. Burns and W. J. Koros, "Defining the challenges for $C_3H_6/C_3H_8$ separation using polymeric membranes", J. Membr. Sci., 211, 299 (2003). https://doi.org/10.1016/S0376-7388(02)00430-1
  45. J. Caro and M. Noack, "Zeolite membranes - Recent developments and progress", Micropor. Mesopor. Mat., 115, 215 (2008). https://doi.org/10.1016/j.micromeso.2008.03.008
  46. Y. S. Lin, I. Kumakiri, B. N. Nair, and H. Alsyouri, "Microporous inorganic membranes", Sep. Purif. Methods, 31, 229 (2002). https://doi.org/10.1081/SPM-120017009
  47. E. E. McLeary, J. C. Jansen, and F. Kapteijn, "Zeolite based films, membranes and membrane reactors: Progress and prospects", Micropor. Mesopor. Mat., 90, 198 (2006). https://doi.org/10.1016/j.micromeso.2005.10.050
  48. K. A. Stoitsas, A. Gotzias, E. S. Kikkinides, T. A. Steriotis, N. K. Kanellopoulos, M. Stoukides, and V. T. Zaspalis, "Porous ceramic membranes for propane-propylene separation via the p-complexation mechanism: Unsupported systems", Micropor. Mesopor. Mat., 78, 235 (2005). https://doi.org/10.1016/j.micromeso.2004.10.027
  49. N. W. Ockwig and T. M. Nenoff, "Membranes for hydrogen separation", Chem. Rev., 107, 4078 (2007). https://doi.org/10.1021/cr0501792
  50. M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, and H. K. Jeong, "Current status of metal-organic framework membranes for gas separations: Promises and challenges", Ind. Eng. Chem. Res., 51, 2179 (2012). https://doi.org/10.1021/ie202038m
  51. T. T. Moore and W. J. Koros, "Non-ideal effects in organic-inorganic materials for gas separation membranes", J. Mol. Struct., 739, 87 (2005). https://doi.org/10.1016/j.molstruc.2004.05.043
  52. L. Xu, M. Rungta, M. K. Brayden, M. V. Martinez, B. A. Stears, G. A. Barbay, and W. J. Koros, "Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations", J. Membr. Sci., 423-424, 314 (2012). https://doi.org/10.1016/j.memsci.2012.08.028
  53. S. Lagorsse, F. D. Magalhaes, and A. Mendes, "Aging study of carbon molecular sieve membranes", J. Membr. Sci., 310, 494 (2008). https://doi.org/10.1016/j.memsci.2007.11.025
  54. E. E. McLeary, J. C. Jansen, and F. Kapteijn, "Zeolite based films, membranes and membrane reactors: Progress and prospects", Micropor. Mesopor. Mat., 90, 198 (2006). https://doi.org/10.1016/j.micromeso.2005.10.050
  55. J. J. Perry, J. A. Perman, and M. J. Zaworotko, "Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks", Chem. Soc. Rev., 38, 1400 (2009). https://doi.org/10.1039/b807086p
  56. G. Ferey, "Hybrid porous solids: past, present, future", Chem. Soc. Rev., 37, 191 (2008). https://doi.org/10.1039/B618320B
  57. J. L. C. Rowsell and O. M. Yaghi, "Metal-organic frameworks: A new class of porous materials", Micropor. Mesopor. Mat., 73, 3 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034
  58. Y. J. Sun and H. C. Zhou, "Recent progress in the synthesis of metal-organic frameworks", Sci. Technol. Adv. Mater., 16, 054202 (2015). https://doi.org/10.1088/1468-6996/16/5/054202
  59. N. Stock and S. Biswas, "Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites", Chem. Rev., 112, 933 (2012). https://doi.org/10.1021/cr200304e
  60. A. Betard and R. A. Fischer, "Metal-organic framework thin films: From fundamentals to applications", Chem. Rev., 112, 1055 (2012). https://doi.org/10.1021/cr200167v
  61. J. Klinowski, F. A. A. Paz, P. Silva, and J. Rocha, "Microwave-assisted synthesis of metal-organic frameworks", Dalton T., 40, 321 (2011). https://doi.org/10.1039/C0DT00708K
  62. D. Zacher, O. Shekhah, C. Woll, and R. A. Fischer, "Thin films of metal-organic frameworks", Chem. Soc. Rev., 38, 1418 (2009). https://doi.org/10.1039/b805038b
  63. E. Haldoupis, S. Nair, and D. S. Sholl, "Efficient calculation of diffusion limitations in metal organic framework materials: A tool for identifying materials for kinetic separations", J. Am. Chem. Soc., 132, 7528 (2010). https://doi.org/10.1021/ja1023699
  64. J. R. Li, R. J. Kuppler, and H. C. Zhou, "Selective gas adsorption and separation in metal-organic frameworks", Chem. Soc. Rev., 38, 1477 (2009). https://doi.org/10.1039/b802426j
  65. L. J. Murray, M. Dinca, and J. R. Long, "Hydrogen storage in metal-organic frameworks", Chem. Soc. Rev., 38, 1294 (2009). https://doi.org/10.1039/b802256a
  66. P. Horcajada, C. Serre, D. Grosso, C. Boissiere, S. Perruchas, C. Sanchez, and G. Ferey, "Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks", Adv. Mater., 21, 1931 (2009). https://doi.org/10.1002/adma.200801851
  67. M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, and P. J. Hesketh, "Stress-induced Chemical Detection Using Flexible Metal-Organic Frameworks", J. Am. Chem. Soc., 130, 14404 (2008). https://doi.org/10.1021/ja805235k
  68. Z. H. Xiang, Z. Hu, D. P. Cao, W. T. Yang, J. M. Lu, B. Y. Han, and W. C. Wang, "Metal-organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping", Angew. Chem. Int. Ed., 50, 491 (2011). https://doi.org/10.1002/anie.201004537
  69. D. O. Kim, J. Park, G. R. Ahn, H. J. Jeon, J. S. Kim, D. W. Kim, M. S. Jung, S. W. Lee, and S. H. Shin, "Synthesis of MOF having functional side group", Inorg. Chim. Acta, 370, 76 (2011). https://doi.org/10.1016/j.ica.2011.01.030
  70. M. Schlesinger, S. Schulze, M. Hietschold, and M. Mehring, "Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [$Cu_2(btc)_3(H_2O)_3$] and [$Cu_2(btc)(OH)(H_2O)$]", Micropor. Mesopor. Mat., 132, 121 (2010). https://doi.org/10.1016/j.micromeso.2010.02.008
  71. C. M. Lu, J. Liu, K. F. Xiao, and A. T. Harris, "Microwave enhanced synthesis of MOF-5 and its $CO_2$ capture ability at moderate temperatures across multiple capture and release cycles", Chem. Eng. J., 156, 465 (2010). https://doi.org/10.1016/j.cej.2009.10.067
  72. N. A. Khan, E. Haque, and S. H. Jhung, "Rapid syntheses of a metal-organic framework material $Cu_3(BTC)_2(H_2O)_3$ under microwave: a quantitative analysis of accelerated syntheses", Phys. Chem. Chem. Phys., 12, 2625 (2010). https://doi.org/10.1039/b921558a
  73. W. J. Son, J. S. Choi, and W. S. Ahn, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials", Micropor. Mesopor. Mat., 113, 31 (2008). https://doi.org/10.1016/j.micromeso.2007.10.049
  74. J. Y. Choi, J. Kim, S. H. Jhung, H. K. Kim, J. S. Chang, and H. K. Chae, "Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5", Bull. Korean Chem. Soc., 27, 1523 (2006). https://doi.org/10.5012/bkcs.2006.27.10.1523
  75. J. W. Ren, T. Segakweng, H. W. Langmi, N. M. Musyoka, B. C. North, M. Mathe, and D. Bessarabov, "Microwave-assisted modulated synthesis of zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage applications", Int. J. Mater. Res., 105, 516 (2014). https://doi.org/10.3139/146.111047
  76. N. A. Khan, I. J. Kang, H. Y. Seok, and S. H. Jhung, "Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101", Chem. Eng. J., 166, 1152 (2011). https://doi.org/10.1016/j.cej.2010.11.098
  77. T. Chalati, P. Horcajada, R. Gref, P. Couvreur, and C. Serre, "Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A", J. Mater. Chem., 21, 2220 (2011). https://doi.org/10.1039/C0JM03563G
  78. P. Silva, A. A. Valente, J. Rocha, and F. A. A. Paz, "Fast microwave synthesis of a microporous lanthanide organic framework", Cryst. Growth Des., 10, 2025 (2010). https://doi.org/10.1021/cg900884d
  79. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, and R. Gref, "Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging", Nat. Mater., 9, 172 (2010). https://doi.org/10.1038/nmat2608
  80. M. Tonigold, Y. Lu, B. Bredenkotter, B. Rieger, S. Bahnmuller, J. Hitzbleck, G. Langstein, and D. Volkmer, "Heterogeneous catalytic oxidation by MFU-1: A cobalt(II)-containing metal-organic framework", Angew. Chem. Int. Ed., 48, 7546 (2009). https://doi.org/10.1002/anie.200901241
  81. K. M. L. Taylor-Pashow, J. Della Rocca, Z. G. Xie, S. Tran, and W. B. Lin, "Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery", J. Am. Chem. Soc., 131, 14261 (2009). https://doi.org/10.1021/ja906198y
  82. J.-H. Park, S.-H. Park, and S.-H. Jhung, "Microwave-syntheses of zeolitic imidazolate framework material, ZIF-8", J. Korean Chem. Soc., 53, 553 (2009). https://doi.org/10.5012/jkcs.2009.53.5.553
  83. X. F. Wang, Y. B. Zhang, H. Huang, J. P. Zhang, and X. M. Chen, "Microwave-assisted solvothermal synthesis of a dynamic porous metal-carboxylate framework", Cryst. Growth Des., 8, 4559 (2008). https://doi.org/10.1021/cg800623v
  84. B. Liu, R. Q. Zou, R. Q. Zhong, S. Han, H. Shioyama, T. Yamada, G. Maruta, S. Takeda, and Q. Xu, "Microporous coordination polymers of cobalt(II) and manganese(II) 2,6-naphthalenedicarboxylate: preparations, structures and gas sorptive and magnetic properties", Micropor. Mesopor. Mat., 111, 470 (2008). https://doi.org/10.1016/j.micromeso.2007.08.024
  85. Y. S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, J. T. Hupp, and R. Q. Snurr, "Separation of $CO_2$ from $CH_4$ using mixed-ligand metal-organic frameworks", Langmuir, 24, 8592 (2008). https://doi.org/10.1021/la800555x
  86. S. H. Jhung, J. H. Lee, J. W. Yoon, C. Serre, G. Ferey, and J. S. Chang, "Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability", Adv. Mater., 19, 121 (2007). https://doi.org/10.1002/adma.200601604
  87. S. H. Jhung, J. H. Lee, and J. S. Chang, "Microwave synthesis of a nanoporous hybrid material, chromium trimesate", Bull. Korean Chem. Soc., 26, 880 (2005). https://doi.org/10.5012/bkcs.2005.26.6.880
  88. S. R. Venna and M. A. Carreon, "Highly permeable zeolite imidazolate framework-8 membranes for $CO_2/CH_4$ separation", J. Am. Chem. Soc., 132, 76 (2010). https://doi.org/10.1021/ja909263x
  89. M. C. McCarthy, V. Varela-Guerrero, G. V. Barnett, and H. K. Jeong, "Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures", Langmuir, 26, 14636 (2010). https://doi.org/10.1021/la102409e
  90. Y. Y. Liu, E. P. Hu, E. A. Khan, and Z. P. Lai, "Synthesis and characterization of ZIF-69 membranes and separation for $CO_2/CO$ mixture", J. Membr. Sci., 353, 36 (2010). https://doi.org/10.1016/j.memsci.2010.02.023
  91. Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang, and J. Caro, "Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity", Angew. Chem. Int. Ed., 49, 548 (2010). https://doi.org/10.1002/anie.200905645
  92. Y. S. Li, H. Bux, A. Feldhoff, G. L. Li, W. S. Yang, and J. Caro, "Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes", Adv. Mater., 22, 3322 (2010). https://doi.org/10.1002/adma.201000857
  93. A. S. Huang, H. Bux, F. Steinbach, and J. Caro, "Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-Aminopropyltriethoxysilane as covalent linker", Angew. Chem. Int. Ed., 49, 4958 (2010). https://doi.org/10.1002/anie.201001919
  94. H. Bux, F. Y. Liang, Y. S. Li, J. Cravillon, M. Wiebcke, and J. Caro, "Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis", J. Am. Chem. Soc., 131, 16000 (2009). https://doi.org/10.1021/ja907359t
  95. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", P. Natl. Acad. Sci. USA, 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  96. D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, and T. Duren, "Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations", J. Am. Chem. Soc., 133, 8900 (2011). https://doi.org/10.1021/ja202154j
  97. H. T. Kwon, H. K. Jeong, A. S. Lee, H. S. An, and J. S. Lee, "Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances", J. Am. Chem. Soc., 137, 12304 (2015). https://doi.org/10.1021/jacs.5b06730
  98. S. Hermes, D. Zacher, A. Baunemann, C. Woll, and R. A. Fischer, "Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers", Chem. Mater., 19, 2168 (2007). https://doi.org/10.1021/cm062854+
  99. O. M. Yaghi and H. L. Li, "Hydrothermal synthesis of a metal-organic framework containing large rectangular channels", J. Am. Chem. Soc., 117, 10401 (1995). https://doi.org/10.1021/ja00146a033
  100. A. Ramanan and M. S. Whittingham, "How molecules turn into solids: the case of self-assembled metal-organic frameworks", Cryst. Growth Des., 6, 2419 (2006). https://doi.org/10.1021/cg0604273
  101. R. G. Pearson, "Hard and Soft Acids and Bases", J. Am. Chem. Soc., 85, 3533 (1963). https://doi.org/10.1021/ja00905a001
  102. O. M. Yaghi, G. M. Li, and H. L. Li, "Selective binding and removal of guests in a microporous metal-organic framework", Nature, 378, 703 (1995). https://doi.org/10.1038/378703a0
  103. A. Rabenau, "The role of hydrothermal synthesis in preparative chemistry", Angew. Chem. Int. Ed., 24, 1026 (1985). https://doi.org/10.1002/anie.198510261
  104. B. F. Hoskins and R. Robson, "Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2", J. Am. Chem. Soc., 112, 1546 (1990). https://doi.org/10.1021/ja00160a038
  105. S. Keskin and S. Kizilel, "Biomedical applications of metal organic frameworks", Ind. Eng. Chem. Res., 50, 1799 (2011). https://doi.org/10.1021/ie101312k
  106. U. P. Mueller, H.; Hesse, M.; Wessel, H., "Method for Electrochemical Production of a Crystalline Porous Metal Organic Skeleton Material", World Patent WO20055049892, Feburary 6 (2005).
  107. T. Friscic, "New opportunities for materials synthesis using mechanochemistry", J. Mater. Chem., 20, 7599 (2010). https://doi.org/10.1039/c0jm00872a
  108. A. L. Garay, A. Pichon, and S. L. James, "Solvent-free synthesis of metal complexes", Chem. Soc. Rev., 36, 846 (2007). https://doi.org/10.1039/b600363j
  109. P. J. Beldon, L. Fabian, R. S. Stein, A. Thirumurugan, A. K. Cheetham, and T. Friscic, "Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry", Angew .Chem. Int. Ed., 49, 9640 (2010). https://doi.org/10.1002/anie.201005547
  110. T. Friscic, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier, M. J. Duer, "Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating", Angew. Chem. Int. Ed., 49, 712 (2010). https://doi.org/10.1002/anie.200906583
  111. J. H. Bang and K. S. Suslick, "Applications of ultrasound to the synthesis of nanostructured materials", Adv. Mater., 22, 1039 (2010). https://doi.org/10.1002/adma.200904093
  112. T. J. Mason and D. Peters, "In Practical Sonochemistry: Power Ultrasound Uses and Applications", Horwood Publishing, Chichester (2003).
  113. D. J. Tranchemontagne, J. R. Hunt, and O. M. Yaghi, "Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0", Tetrahedron, 64, 8553 (2008). https://doi.org/10.1016/j.tet.2008.06.036
  114. B. l. Hayes, "Microwave Synthesis - Chemistry at the Speed of Light", CEM Publishing, Raleigh, NC (2002).
  115. N. A. Khan and S. H. Jhung, "Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction", Coord. Chem. Rev., 285, 11 (2015). https://doi.org/10.1016/j.ccr.2014.10.008
  116. B. L. Hayes, "Recent advances in microwave-assisted synthesis", Aldrichim Acta, 37, 66 (2004).
  117. C. O. Kappe, "Controlled microwave heating in modern organic synthesis", Angew. Chem. Int. Ed., 43, 6250 (2004). https://doi.org/10.1002/anie.200400655
  118. A. G. Whittaker and D. M. P. Mingos, "Microwave-Assisted Solid-State Reactions Involving Metal Powders", J. Chem. Soc. Dalton, 2073 (1995).
  119. J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov, and V. E. Semenov, "Microwave ponderomotive forces in solid-state ionic plasmas", Phys. Plasmas, 5, 1664 (1998). https://doi.org/10.1063/1.872835
  120. D. Adam, "Microwave chemistry: Out of the kitchen", Nature, 421, 571 (2003) https://doi.org/10.1038/421571a
  121. E. Haque, N. A. Khan, J. H. Park, and S. H. Jhung, "Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: A kinetic study", Chem.-Eur. J., 16, 1046 (2010). https://doi.org/10.1002/chem.200902382
  122. N. A. Khan and S. H. Jhung, "Phase-transition and phase-selective synthesis of porous chromium-benzenedicarboxylates", Cryst. Growth Des., 10, 1860 (2010). https://doi.org/10.1021/cg901562d
  123. A. J. Burggraaf, "Fundamentals of Inorganic Membrane Science and Technology", Elsevier, New York (1996).
  124. V. V. Guerrero, Y. Yoo, M. C. McCarthy, and H. K. Jeong, "HKUST-1 membranes on porous supports using secondary growth", J. Mater. Chem., 20, 3938 (2010). https://doi.org/10.1039/b924536g
  125. Y. Yoo, Z. P. Lai, and H. K. Jeong, "Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth", Micropor. Mesopor. Mat., 123, 100 (2009). https://doi.org/10.1016/j.micromeso.2009.03.036
  126. R. Ranjan and M. Tsapatsis, "Microporous metal organic framework membrane on porous support using the seeded growth method", Chem. Mater., 21, 4920 (2009). https://doi.org/10.1021/cm902032y
  127. Y. Yoo and H. K. Jeong, "Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition", Chem. Commun., 2441 (2008).
  128. S. Hermes, F. Schroder, R. Chelmowski, C. Woll, and R. A. Fischer, "Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111)", J. Am. Chem. Soc., 127, 13744 (2005). https://doi.org/10.1021/ja053523l
  129. A. S. Huang, W. Dou, and J. Caro, "Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization", J. Am. Chem. Soc., 132, 15562 (2010). https://doi.org/10.1021/ja108774v
  130. J. G. Nguyen and S. M. Cohen, "Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification", J. Am. Chem. Soc., 132, 4560 (2010). https://doi.org/10.1021/ja100900c
  131. Y. Yoo, V. Varela-Guerrero, and H. K. Jeong, "Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying", Langmuir, 27, 2652 (2011). https://doi.org/10.1021/la104775d
  132. D. Zacher, R. Schmid, C. Woll, and R. A. Fischer, "Surface chemistry of metal-organic frameworks at the liquid-solid interface", Angew. Chem. Int. Ed., 50, 176 (2011). https://doi.org/10.1002/anie.201002451
  133. O. Shekhah, J. Liu, R. A. Fischer, and C. Woll, "MOF thin films: existing and future applications", Chem. Soc. Rev., 40, 1081 (2011). https://doi.org/10.1039/c0cs00147c
  134. B. Liu and R. A. Fischer, "Liquid-phase epitaxy of metal organic framework thin films", Sci. China Chem., 54, 1851 (2011). https://doi.org/10.1007/s11426-011-4406-8
  135. H. T. Kwon and H. K. Jeong, "Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth", Chem. Commun., 49, 3854 (2013). https://doi.org/10.1039/c3cc41039k
  136. A. M. Spokoyny, D. Kim, A. Sumrein, and C. A. Mirkin, "Infinite coordination polymer nano- and microparticle structures", Chem. Soc. Rev., 38, 1218 (2009). https://doi.org/10.1039/b807085g
  137. E. Biemmi, C. Scherb, and T. Bein, "Oriented growth of the metal organic framework $Cu_3(BTC)_2(H_2O)_3{\cdot}xH_2O$ tunable with functionalized self-assembled monolayers", J. Am. Chem. Soc., 129, 8054 (2007). https://doi.org/10.1021/ja0701208
  138. D. Zacher, A. Baunemann, S. Hermes, and R. A. Fischer, "Deposition of microcrystalline [$Cu_3(btc)_2$] and [$Zn_2(bdc)_2(dabco)$] at alumina and silica surfaces modified with patterned self assembled organic monolayers: Evidence of surface selective and oriented growth", J. Mater. Chem., 17, 2785 (2007). https://doi.org/10.1039/b703098c
  139. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, and C. Woll, "Step-by-step route for the synthesis of metal-organic frameworks", J. Am. Chem. Soc., 129, 15118 (2007). https://doi.org/10.1021/ja076210u
  140. O. Shekhah, "Layer-by-layer method for the synthesis and growth of surface mounted metal-organic frameworks (SURMOFs)", Materials, 3, 1302 (2010). https://doi.org/10.3390/ma3021302
  141. O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, and C. Woll, "Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy", Nat. Mater., 8, 481 (2009). https://doi.org/10.1038/nmat2445
  142. R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels, and D. E. De Vos, "Patterned growth of metal-organic framework coatings by electrochemical synthesis", Chem. Mater., 21, 2580 (2009). https://doi.org/10.1021/cm900069f
  143. G. R. Gavalas, "Zeolite Membranes for Gas and Liquid Separations", John Wiley & Sons, Ltd, New York (2006).
  144. M. C. Lovallo, A. Gouzinis, and M. Tsapatsis, "Synthesis and characterization of oriented MFI membranes prepared by secondary growth", AIChE J., 44, 1903 (1998). https://doi.org/10.1002/aic.690440820
  145. Y. Y. Liu, Z. F. Ng, E. A. Khan, H. K. Jeong, C. B. Ching, and Z. P. Lai, "Synthesis of continuous MOF-5 membranes on porous alpha-alumina substrates", Micropor. Mesopor. Mat., 118, 296 (2009). https://doi.org/10.1016/j.micromeso.2008.08.054
  146. H. L. Guo, G. S. Zhu, I. J. Hewitt, and S. L. Qiu, ""Twin Copper Source" growth of metal-organic framework membrane: $Cu_3(BTC)_2$ with high permeability and selectivity for recycling $H_2$", J. Am. Chem. Soc., 131, 1646 (2009). https://doi.org/10.1021/ja8074874
  147. E. Barankova, X. Tan, L. F. Villalobos, E. Litwiller, and K.-V. Peinemann, "A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane", Angew. Chem. Int. Ed., 56, 1 (2017). https://doi.org/10.1002/anie.201610955
  148. A. S. Huang and J. Caro, "Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity", Angew. Chem. Int. Ed., 50, 4979 (2011). https://doi.org/10.1002/anie.201007861
  149. H. T. Kwon and H. K. Jeong, "In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation", J. Am. Chem. Soc., 135, 10763 (2013). https://doi.org/10.1021/ja403849c
  150. M. A. Snyder and M. Tsapatsis, "Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes", Angew .Chem. Int. Ed., 46, 7560 (2007). https://doi.org/10.1002/anie.200604910
  151. Y. X. Hu, X. L. Dong, J. P. Nan, W. Q. Jin, X. M. Ren, N. P. Xu, and Y. M. Lee, "Metal-organic framework membranes fabricated via reactive seeding", Chem. Commun., 47, 737 (2011). https://doi.org/10.1039/C0CC03927F
  152. J. P. Nan, X. L. Dong, W. J. Wang, W. Q. Jin, and N. P. Xu, "Step-by-step seeding procedure for preparing HKUST-1 membrane on porous alpha-alumina support", Langmuir, 27, 4309 (2011). https://doi.org/10.1021/la200103w
  153. S. Aguado, J. Canivet, and D. Farrusseng, "Engineering structured MOF at nano and macroscales for catalysis and separation", J. Mater. Chem., 21, 7582 (2011). https://doi.org/10.1039/c1jm10787a
  154. X. Q. Zou, F. Zhang, S. Thomas, G. S. Zhu, V. Valtchev, and S. Mintova, "Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures", Chem.-Eur. J., 17, 12076 (2011). https://doi.org/10.1002/chem.201101733
  155. N. C. Su, D. T. Sun, C. M. Beavers, D. K. Britt, W. L. Queen, and J. J. Urban, "Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes", Energ. Environ. Sci., 9, 922 (2016). https://doi.org/10.1039/C5EE02660A
  156. Y. S. Li, F. Y. Liang, H. G. Bux, W. S. Yang, and J. Caro, "Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation", J. Membr. Sci., 354, 48 (2010). https://doi.org/10.1016/j.memsci.2010.02.074
  157. H. Bux, C. Chmelik, R. Krishna, and J. Caro, "Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion", J. Membr. Sci., 369, 284 (2011). https://doi.org/10.1016/j.memsci.2010.12.001
  158. Z. Ni and R. I. Masel, "Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis", J. Am. Chem. Soc., 128, 12394 (2006). https://doi.org/10.1021/ja0635231
  159. Y. Q. Zhu, Q. Liu, and A. S. Huang, "Microwave synthesis of tubular zeolitic imidazolate framework ZIF-8 membranes for $CO_2/CH_4$ separation", Sep. Sci. Technol., 51, 883 (2016). https://doi.org/10.1080/01496395.2015.1135948
  160. H. L. Guo, G. S. Zhu, H. Li, X. Q. Zou, X. J. Yin, W. S. Yang, S. L. Qiu, and R. Xu, "Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling $CO_2$", Angew .Chem. Int. Ed., 45, 7053 (2006). https://doi.org/10.1002/anie.200602308
  161. J. C. Poshusta, R. D. Noble, and J. L. Falconer, "Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes", J. Membr. Sci., 160, 115 (1999). https://doi.org/10.1016/S0376-7388(99)00073-3
  162. Y. C. Pan and Z. O. Lai, "Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions", Chem. Commun., 47, 10275 (2011). https://doi.org/10.1039/c1cc14051e
  163. M. Arnold, P. Kortunov, D. J. Jones, Y. Nedellec, J. Karger, and J. Caro, "Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate", Eur. J. Inorg. Chem., 2007, 60 (2007). https://doi.org/10.1002/ejic.200600698
  164. R. S. A. de Lange, J. H. A. Hekkink, K. Keizer, A. J. Burggraaf, and Y. H. Ma, "Sorption studies of microporous sol-gel modified ceramic membranes", J. Porous Mat., 2, 141 (1995). https://doi.org/10.1007/BF00489722
  165. H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y. S. Li, and J. Caro, "Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation", Chem. Mater., 23, 2262 (2011). https://doi.org/10.1021/cm200555s
  166. A. Vanderdrift, "Evolutionary selection a principle governing growth orientation in vapour-deposited layers", Philips Res. Rep., 22, 267 (1967).
  167. A. J. Bons and P. D. Bons, "The development of oblique preferred orientations in zeolite films and membranes", Micropor. Mesopor. Mat., 62, 9 (2003). https://doi.org/10.1016/S1387-1811(03)00384-6
  168. L. Diestel, H. Bux, D. Wachsmuth, and J. Caro, "Pervaporation studies of n-hexane, benzene, mesitylene and their mixtures on zeolitic imidazolate framework-8 membranes", Micropor. Mesopor. Mat., 164, 288 (2012). https://doi.org/10.1016/j.micromeso.2012.06.031
  169. D. Peralta, G. Chaplais, A. Simon-Masseron, K. Barthelet, C. Chizallet, A. A. Quoineaud, and G. D. Pirngruber, "Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations", J. Am. Chem. Soc., 134, 8115 (2012). https://doi.org/10.1021/ja211864w
  170. E. U. S. E. P. Agency, "Summary and Analysis of the 2009 Gasoline Benzene Pre-Compliance Reports", Washington (2009).
  171. C. S. Cundy, "Microwave techniques in the synthesis and modification of zeolite catalysts. A review", Collect. Czech. Chem. C, 63, 1699 (1998). https://doi.org/10.1135/cccc19981699
  172. Y. S. Li and W. S. Yang, "Microwave synthesis of zeolite membranes: A review", J. Membr. Sci., 316, 3 (2008). https://doi.org/10.1016/j.memsci.2007.08.054
  173. X. B. Chen, W. S. Yang, J. Liu, and L. W. Lin, "Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation", J. Membr. Sci., 255, 201 (2005). https://doi.org/10.1016/j.memsci.2005.01.041
  174. X. C. Xu, W. S. Yang, J. Liu, and L. W. Lin, "Synthesis of a high-permeance NaA zeolite membrane by microwave heating", Adv. Mater., 12, 195 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<195::AID-ADMA195>3.0.CO;2-E
  175. X. C. Xu, W. S. Yang, J. Liu, and L. W. Lin, "Fast formation of NaA zeolite membrane in the microwave field", Chinese Sci. Bull., 45, 1179 (2000). https://doi.org/10.1007/BF02886074
  176. J. Motuzas, A. Julbe, R. D. Noble, A. van der Lee, and Z. J. Beresnevicius, "Rapid synthesis of oriented silicalite-1 membranes by microwave-assisted hydrothermal treatment", Micropor. Mesopor. Mat., 92, 259 (2006). https://doi.org/10.1016/j.micromeso.2006.01.014
  177. I. Girnus, M. M. Pohl, J. Richtermendau, M. Schneider, M. Noack, D. Venzke, and J. Caro, "Synthesis of Alpo4-5 aluminumphosphate molecular-sieve crystals for membrane applications by microwave-heating", Adv. Mater., 7, 711 (1995). https://doi.org/10.1002/adma.19950070805
  178. X. C. Xu, Y. Bao, C. S. Song, W. S. Yang, J. Liu, and L. W. Lin, "Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane", Micropor. Mesopor. Mat., 75, 173 (2004). https://doi.org/10.1016/j.micromeso.2004.07.019
  179. K. Weh, M. Noack, I. Sieber, and J. Caro, "Permeation of single gases and gas mixtures through faujasite-type molecular sieve membranes", Micropor. Mesopor. Mat., 54, 27 (2002). https://doi.org/10.1016/S1387-1811(02)00381-5