References
-
Shokrolahi A, Zali A, Keshavarz MH. 2007. Wet carbonbased solid acid/
$NaNO_3$ as a mild and efficient reagent for nitration of aromatic compound under solvent free conditions. Chin. Chem. Lett. 18: 1064-1066. https://doi.org/10.1016/j.cclet.2007.06.031 - Bruckdorfer KR. 2001. The nitration of proteins in platelets. C. R. Acad. Sci. III 324: 611-615. https://doi.org/10.1016/S0764-4469(01)01336-1
- Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C, et al. 2005. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 280: 42464-42475. https://doi.org/10.1074/jbc.M504212200
- Rocha BS, Gago B, Barbosa RM, Lundberg JO, Radi R, Laranjinha J. 2012. Intragastric nitration by dietary nitrite: implications for modulation of protein and lipid signaling. Free Radic. Biol. Med. 52: 693-698. https://doi.org/10.1016/j.freeradbiomed.2011.11.011
- Sheldon RA. 2008. E factors, green chemistry and catalysis: an odyssey. Chem. Commun. (Camb.) 2008: 3352-3365.
- Casella L, Monzani E, Nicolis S. 2010. Potential applications of peroxidases in the fine chemical industries, pp. 111-153. In Torres E, Ayala M (eds.). Biocatalysis Based on Heme Peroxidases: Peroxidases as Potential Industrial Biocatalysts. Springer, Berlin-Heidelberg.
- Setala H, Pajunen A, Rummakko P, Sipila J, Brunow G. 1999. A novel type of spiro compound formed by oxidative cross coupling of methyl sinapate with a syringyl lignin model c ompound. A model system for the beta-1 pathway in lignin biosynthesis. J. Chem. Soc. Perkin Trans. 1: 461-464.
- van Deurzen MPJ, van Rantwijk F, Sheldon RA. 1997. Selective oxidations catalyzed by peroxidases. Tetrahedron 53: 13183-13220. https://doi.org/10.1016/S0040-4020(97)00477-8
- Franssen MCR, Vanboven HG, Vanderplas HC. 1987. Enzymatic halogenation of pyrazoles and pyridine derivatives. J. Heterocycl. Chem. 24: 1313-1316. https://doi.org/10.1002/jhet.5570240516
- Stanbury DM. 1989. Reduction potentials involving inorganic free radicals in aqueous solution. Adv. Inorg. Chem. 33: 69-138.
- Hamid M, Khalil-ur-Rehman. 2009. Potential applications of peroxidases. Food Chem. 115: 1177-1186. https://doi.org/10.1016/j.foodchem.2009.02.035
- Flores-Cervantes DX, Maes HM, Schaffer A, Hollender J, Kohler HP. 2014. Slow biotransformation of carbon nanotubes by horseradish peroxidase. Environ. Sci. Technol. 48: 4826-4834. https://doi.org/10.1021/es4053279
- Nanayakkara S, Zhao Z, Patti AF, He L, Saito K. 2014. Immobilized horseradish peroxidase (I-HRP) as biocatalyst for oxidative polymerization of 2,6-dimethylphenol. ACS Sustain. Chem. Eng. 2: 1947-1950. https://doi.org/10.1021/sc500392k
- Budde CL, Beyer A, Munir IZ, Dordick JS, Khmelnitsky YL. 2001. Enzymatic nitration of phenols. J. Mol. Catal. B Enzym. 15: 55-64. https://doi.org/10.1016/S1381-1177(01)00004-2
-
Dai RJ, Huang H, Chen J, Deng YL, Xiao SY. 2007. Nitration reaction catalyzed by horseradish peroxidase in the presence of
$H_2O_2$ and$NaNO_2$ . Chin. J. Chem. 25: 1690-1694. https://doi.org/10.1002/cjoc.200790312 - Doukyu N, Ogino H. 2010. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48: 270-282. https://doi.org/10.1016/j.bej.2009.09.009
- Reslow M, Adlercreutz P, Mattiasson B. 1987. Organicsolvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process. Appl. Microbiol. Biotechnol. 26: 1-8. https://doi.org/10.1007/BF00282141
- Monti D, Ottolina G, Carrea G, Riva S. 2011. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 111: 4111-4140. https://doi.org/10.1021/cr100334x
- Fernandes P, Cabral J. 2008. Biocatalysis in Biphasic Systems: General, pp. 191-210. Wiley-VCH Verlag, Weinheim.
- Vasic-Racki D, Kragl U, Liese A. 2003. Benefits of enzyme kinetics modelling. Chem. Biochem. Eng. Q. 17: 7-18.
- Vasic-Racki D, Findrik Z, Presecki AV. 2011. Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91: 845-856. https://doi.org/10.1007/s00253-011-3414-0
- Anni H, Yonetani T. 1992. Mechanism of action of peroxidases. Met. Ions Biol. Syst. 28: 219-241.
- Raven EL. 2013. Heme peroxidases, pp. 962-965. In Roberts GCK (ed.). Encyclopedia of Biophysics. Springer, Berlin-Heidelberg.
- Kong M, Wang K, Dong R, Gao H. 2015. Enzyme catalytic nitration of aromatic compounds. Enzyme Microb. Technol. 73-74: 34-43. https://doi.org/10.1016/j.enzmictec.2015.03.008
-
Pezzella A, Manini P, Di Donato P, Boni R, Napolitano A, Palumbo A, d'Ischia M. 2004.
$17{\beta}$ -Estradiol nitration by peroxidase/$H_2O_2/NO_2^^-$ : a chemical assessment. Bioorg. Med. Chem. 12: 2927-2936. https://doi.org/10.1016/j.bmc.2004.03.036 - Monzani E, Roncone R, Galliano M, Koppenol WH, Casella L. 2004. Mechanistic insight into the peroxidase catalyzed nitration of tyrosine d erivatives by nitrite and hydrogen peroxide. Eur. J. Biochem. 271: 895-906. https://doi.org/10.1111/j.1432-1033.2004.03992.x
- Chew YH, Chua LS, Cheng KK, Sarmidi MR, Aziz RA, Lee CT. 2008. Kinetic study on the hydrolysis of palm olein using immobilized lipase. Biochem. Eng. J. 39: 516-520. https://doi.org/10.1016/j.bej.2007.10.019
- Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP. 2001. Stability of free and immobilised peroxidase in aqueous-organic solvents mixtures. J. Mol. Catal. B Enzym. 15: 147-153. https://doi.org/10.1016/S1381-1177(01)00017-0
- Khmelnitsky YL, Levashov AV, Klyachko NL, Martinek K. 1988. Engineering biocatalytic systems in organic media with low water content. Enzyme Microb. Technol. 10: 710-724. https://doi.org/10.1016/0141-0229(88)90115-9
- Ryu K, Dordick JS. 1992. How do organic-solvents affect peroxidase structure and function? Biochemistry 31: 2588-2598. https://doi.org/10.1021/bi00124a020
- Lee SB, Kim KJ. 1995. Effect of water activity on enzyme hydration and enzyme reaction-rate in organic-solvents. J. Ferment. Bioeng. 79: 473-478. https://doi.org/10.1016/0922-338X(95)91264-6
- Singh P, Prakash R, Shah K. 2012. Effect of organic solvents on peroxidases from rice and horseradish: prospects for enzyme based applications. Talanta 97: 204-210. https://doi.org/10.1016/j.talanta.2012.04.018
- Veitch NC. 2004. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65: 249-259. https://doi.org/10.1016/j.phytochem.2003.10.022
- Nicell JA, Wright H. 1997. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme Microb. Technol. 21: 302-310. https://doi.org/10.1016/S0141-0229(97)00001-X
- Hernandez K, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. 2012. Hydrogen peroxide in biocatalysis. A dangerous liaison. Curr. Org. Chem. 16: 2652-2672. https://doi.org/10.2174/138527212804004526
- Puiu M, Constantinovici M, Babaligea I, Raducan A, Olmazu C, Oancea D. 2010. Detecting operational inactivation of horseradish peroxidase using an isoconversional method. Chem. Eng. Technol. 33: 414-420. https://doi.org/10.1002/ceat.200900328
- Valderrama B, Ayala M, Vazquez-Duhalt R. 2002. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem. Biol. 9: 555-565. https://doi.org/10.1016/S1074-5521(02)00149-7
- Lopes GR, Pinto D, Silva AMS. 2014. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Adv. 4: 37244-37265. https://doi.org/10.1039/C4RA06094F
- Ryan BJ, O'Fagain C. 2007. Effects of single mutations on the stability of horseradish peroxidase to hydrogen peroxide. Biochimie 89: 1029-1032. https://doi.org/10.1016/j.biochi.2007.03.013
- Asad S, Dabirmanesh B, Khajeh K. 2014. Phenol removal from refinery wastewater by mutant recombinant horseradish peroxidase. Biotechnol. Appl. Biochem. 61: 226-229. https://doi.org/10.1002/bab.1159
- Hassani L, Nourozi R. 2014. Modification of lysine residues of horseradish peroxidase and its effect on stability and structure of the enzyme. Appl. Biochem. Biotechnol. 172: 3558-3569. https://doi.org/10.1007/s12010-014-0756-y
- Gil-Rodriguez P, Ferreira-Batista C, Vazquez-Duhalt R, Valderrama B. 2008. A novel heme peroxidase from Raphanus sativus intrinsically resistant to hydrogen peroxide. Eng. Life Sci. 8: 286-296. https://doi.org/10.1002/elsc.200700073
- Colonna S, Gaggero N, Richelmi C, Pasta P. 1999. Recent biotechnological developments in the use of peroxidases. Trends Biotechnol. 17: 163-168. https://doi.org/10.1016/S0167-7799(98)01288-8
- van de Velde F, van Rantwijk F, Sheldon RA. 2001. Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol. 19: 73-80. https://doi.org/10.1016/S0167-7799(00)01529-8
- van der Vliet A, Eiserich JP, Halliwell B, Cross CE. 1997. Formation of reactive nitrogen species during peroxidasecatalyzed oxidation of nitrite - a potential additional, mechanism of nitric oxide-dependent toxicity. J. Biol. Chem. 272: 7617-7625. https://doi.org/10.1074/jbc.272.12.7617
- Burner U, Furtmuller PG, Kettle AJ, Koppenol WH, Obinger C. 2000. Mechanism of reaction of myeloperoxidase with nitrite. J. Biol. Chem. 275: 20597-20601. https://doi.org/10.1074/jbc.M000181200
- Lehnig M. 2001. 15N chemically induced dynamic nuclear polarization during reaction of N-acetyl-L-tyrosine with the nitrating systems nitrite/hydrogen peroxide/horseradish peroxidase and nitrite/hypochloric acid. Arch. Biochem. Biophys. 393: 245-254. https://doi.org/10.1006/abbi.2001.2494
- Roncone R, Barbieri M, Monzani E, Casella L. 2006. Reactive nitrogen species generated by heme proteins: mechanism of formation and targets. Coord. Chem. Rev. 250: 1286-1293. https://doi.org/10.1016/j.ccr.2005.11.015
Cited by
- The molecular mechanism of the photocatalytic oxidation reactions by horseradish peroxidase in the presence of histidine vol.22, pp.18, 2017, https://doi.org/10.1039/d0gc01972k
- Effects of chronic nitrate exposure on the intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot (Scophthalmus maximus) vol.207, pp.None, 2017, https://doi.org/10.1016/j.ecoenv.2020.111287
- Biophysical characterization of the inactivation of E. coli transketolase by aqueous co-solvents vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-03001-8