DOI QR코드

DOI QR Code

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming (School of Life Science, Beijing Institute of Technology) ;
  • Zhang, Yang (School of Life Science, Beijing Institute of Technology) ;
  • Li, Qida (School of Life Science, Beijing Institute of Technology) ;
  • Dong, Runan (School of Life Science, Beijing Institute of Technology) ;
  • Gao, Haijun (School of Life Science, Beijing Institute of Technology)
  • Received : 2016.07.15
  • Accepted : 2016.10.15
  • Published : 2017.02.28

Abstract

The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

Keywords

References

  1. Shokrolahi A, Zali A, Keshavarz MH. 2007. Wet carbonbased solid acid/$NaNO_3$ as a mild and efficient reagent for nitration of aromatic compound under solvent free conditions. Chin. Chem. Lett. 18: 1064-1066. https://doi.org/10.1016/j.cclet.2007.06.031
  2. Bruckdorfer KR. 2001. The nitration of proteins in platelets. C. R. Acad. Sci. III 324: 611-615. https://doi.org/10.1016/S0764-4469(01)01336-1
  3. Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C, et al. 2005. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 280: 42464-42475. https://doi.org/10.1074/jbc.M504212200
  4. Rocha BS, Gago B, Barbosa RM, Lundberg JO, Radi R, Laranjinha J. 2012. Intragastric nitration by dietary nitrite: implications for modulation of protein and lipid signaling. Free Radic. Biol. Med. 52: 693-698. https://doi.org/10.1016/j.freeradbiomed.2011.11.011
  5. Sheldon RA. 2008. E factors, green chemistry and catalysis: an odyssey. Chem. Commun. (Camb.) 2008: 3352-3365.
  6. Casella L, Monzani E, Nicolis S. 2010. Potential applications of peroxidases in the fine chemical industries, pp. 111-153. In Torres E, Ayala M (eds.). Biocatalysis Based on Heme Peroxidases: Peroxidases as Potential Industrial Biocatalysts. Springer, Berlin-Heidelberg.
  7. Setala H, Pajunen A, Rummakko P, Sipila J, Brunow G. 1999. A novel type of spiro compound formed by oxidative cross coupling of methyl sinapate with a syringyl lignin model c ompound. A model system for the beta-1 pathway in lignin biosynthesis. J. Chem. Soc. Perkin Trans. 1: 461-464.
  8. van Deurzen MPJ, van Rantwijk F, Sheldon RA. 1997. Selective oxidations catalyzed by peroxidases. Tetrahedron 53: 13183-13220. https://doi.org/10.1016/S0040-4020(97)00477-8
  9. Franssen MCR, Vanboven HG, Vanderplas HC. 1987. Enzymatic halogenation of pyrazoles and pyridine derivatives. J. Heterocycl. Chem. 24: 1313-1316. https://doi.org/10.1002/jhet.5570240516
  10. Stanbury DM. 1989. Reduction potentials involving inorganic free radicals in aqueous solution. Adv. Inorg. Chem. 33: 69-138.
  11. Hamid M, Khalil-ur-Rehman. 2009. Potential applications of peroxidases. Food Chem. 115: 1177-1186. https://doi.org/10.1016/j.foodchem.2009.02.035
  12. Flores-Cervantes DX, Maes HM, Schaffer A, Hollender J, Kohler HP. 2014. Slow biotransformation of carbon nanotubes by horseradish peroxidase. Environ. Sci. Technol. 48: 4826-4834. https://doi.org/10.1021/es4053279
  13. Nanayakkara S, Zhao Z, Patti AF, He L, Saito K. 2014. Immobilized horseradish peroxidase (I-HRP) as biocatalyst for oxidative polymerization of 2,6-dimethylphenol. ACS Sustain. Chem. Eng. 2: 1947-1950. https://doi.org/10.1021/sc500392k
  14. Budde CL, Beyer A, Munir IZ, Dordick JS, Khmelnitsky YL. 2001. Enzymatic nitration of phenols. J. Mol. Catal. B Enzym. 15: 55-64. https://doi.org/10.1016/S1381-1177(01)00004-2
  15. Dai RJ, Huang H, Chen J, Deng YL, Xiao SY. 2007. Nitration reaction catalyzed by horseradish peroxidase in the presence of $H_2O_2$ and $NaNO_2$. Chin. J. Chem. 25: 1690-1694. https://doi.org/10.1002/cjoc.200790312
  16. Doukyu N, Ogino H. 2010. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48: 270-282. https://doi.org/10.1016/j.bej.2009.09.009
  17. Reslow M, Adlercreutz P, Mattiasson B. 1987. Organicsolvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process. Appl. Microbiol. Biotechnol. 26: 1-8. https://doi.org/10.1007/BF00282141
  18. Monti D, Ottolina G, Carrea G, Riva S. 2011. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 111: 4111-4140. https://doi.org/10.1021/cr100334x
  19. Fernandes P, Cabral J. 2008. Biocatalysis in Biphasic Systems: General, pp. 191-210. Wiley-VCH Verlag, Weinheim.
  20. Vasic-Racki D, Kragl U, Liese A. 2003. Benefits of enzyme kinetics modelling. Chem. Biochem. Eng. Q. 17: 7-18.
  21. Vasic-Racki D, Findrik Z, Presecki AV. 2011. Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91: 845-856. https://doi.org/10.1007/s00253-011-3414-0
  22. Anni H, Yonetani T. 1992. Mechanism of action of peroxidases. Met. Ions Biol. Syst. 28: 219-241.
  23. Raven EL. 2013. Heme peroxidases, pp. 962-965. In Roberts GCK (ed.). Encyclopedia of Biophysics. Springer, Berlin-Heidelberg.
  24. Kong M, Wang K, Dong R, Gao H. 2015. Enzyme catalytic nitration of aromatic compounds. Enzyme Microb. Technol. 73-74: 34-43. https://doi.org/10.1016/j.enzmictec.2015.03.008
  25. Pezzella A, Manini P, Di Donato P, Boni R, Napolitano A, Palumbo A, d'Ischia M. 2004. $17{\beta}$-Estradiol nitration by peroxidase/$H_2O_2/NO_2^^-$: a chemical assessment. Bioorg. Med. Chem. 12: 2927-2936. https://doi.org/10.1016/j.bmc.2004.03.036
  26. Monzani E, Roncone R, Galliano M, Koppenol WH, Casella L. 2004. Mechanistic insight into the peroxidase catalyzed nitration of tyrosine d erivatives by nitrite and hydrogen peroxide. Eur. J. Biochem. 271: 895-906. https://doi.org/10.1111/j.1432-1033.2004.03992.x
  27. Chew YH, Chua LS, Cheng KK, Sarmidi MR, Aziz RA, Lee CT. 2008. Kinetic study on the hydrolysis of palm olein using immobilized lipase. Biochem. Eng. J. 39: 516-520. https://doi.org/10.1016/j.bej.2007.10.019
  28. Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP. 2001. Stability of free and immobilised peroxidase in aqueous-organic solvents mixtures. J. Mol. Catal. B Enzym. 15: 147-153. https://doi.org/10.1016/S1381-1177(01)00017-0
  29. Khmelnitsky YL, Levashov AV, Klyachko NL, Martinek K. 1988. Engineering biocatalytic systems in organic media with low water content. Enzyme Microb. Technol. 10: 710-724. https://doi.org/10.1016/0141-0229(88)90115-9
  30. Ryu K, Dordick JS. 1992. How do organic-solvents affect peroxidase structure and function? Biochemistry 31: 2588-2598. https://doi.org/10.1021/bi00124a020
  31. Lee SB, Kim KJ. 1995. Effect of water activity on enzyme hydration and enzyme reaction-rate in organic-solvents. J. Ferment. Bioeng. 79: 473-478. https://doi.org/10.1016/0922-338X(95)91264-6
  32. Singh P, Prakash R, Shah K. 2012. Effect of organic solvents on peroxidases from rice and horseradish: prospects for enzyme based applications. Talanta 97: 204-210. https://doi.org/10.1016/j.talanta.2012.04.018
  33. Veitch NC. 2004. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65: 249-259. https://doi.org/10.1016/j.phytochem.2003.10.022
  34. Nicell JA, Wright H. 1997. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme Microb. Technol. 21: 302-310. https://doi.org/10.1016/S0141-0229(97)00001-X
  35. Hernandez K, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. 2012. Hydrogen peroxide in biocatalysis. A dangerous liaison. Curr. Org. Chem. 16: 2652-2672. https://doi.org/10.2174/138527212804004526
  36. Puiu M, Constantinovici M, Babaligea I, Raducan A, Olmazu C, Oancea D. 2010. Detecting operational inactivation of horseradish peroxidase using an isoconversional method. Chem. Eng. Technol. 33: 414-420. https://doi.org/10.1002/ceat.200900328
  37. Valderrama B, Ayala M, Vazquez-Duhalt R. 2002. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem. Biol. 9: 555-565. https://doi.org/10.1016/S1074-5521(02)00149-7
  38. Lopes GR, Pinto D, Silva AMS. 2014. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Adv. 4: 37244-37265. https://doi.org/10.1039/C4RA06094F
  39. Ryan BJ, O'Fagain C. 2007. Effects of single mutations on the stability of horseradish peroxidase to hydrogen peroxide. Biochimie 89: 1029-1032. https://doi.org/10.1016/j.biochi.2007.03.013
  40. Asad S, Dabirmanesh B, Khajeh K. 2014. Phenol removal from refinery wastewater by mutant recombinant horseradish peroxidase. Biotechnol. Appl. Biochem. 61: 226-229. https://doi.org/10.1002/bab.1159
  41. Hassani L, Nourozi R. 2014. Modification of lysine residues of horseradish peroxidase and its effect on stability and structure of the enzyme. Appl. Biochem. Biotechnol. 172: 3558-3569. https://doi.org/10.1007/s12010-014-0756-y
  42. Gil-Rodriguez P, Ferreira-Batista C, Vazquez-Duhalt R, Valderrama B. 2008. A novel heme peroxidase from Raphanus sativus intrinsically resistant to hydrogen peroxide. Eng. Life Sci. 8: 286-296. https://doi.org/10.1002/elsc.200700073
  43. Colonna S, Gaggero N, Richelmi C, Pasta P. 1999. Recent biotechnological developments in the use of peroxidases. Trends Biotechnol. 17: 163-168. https://doi.org/10.1016/S0167-7799(98)01288-8
  44. van de Velde F, van Rantwijk F, Sheldon RA. 2001. Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol. 19: 73-80. https://doi.org/10.1016/S0167-7799(00)01529-8
  45. van der Vliet A, Eiserich JP, Halliwell B, Cross CE. 1997. Formation of reactive nitrogen species during peroxidasecatalyzed oxidation of nitrite - a potential additional, mechanism of nitric oxide-dependent toxicity. J. Biol. Chem. 272: 7617-7625. https://doi.org/10.1074/jbc.272.12.7617
  46. Burner U, Furtmuller PG, Kettle AJ, Koppenol WH, Obinger C. 2000. Mechanism of reaction of myeloperoxidase with nitrite. J. Biol. Chem. 275: 20597-20601. https://doi.org/10.1074/jbc.M000181200
  47. Lehnig M. 2001. 15N chemically induced dynamic nuclear polarization during reaction of N-acetyl-L-tyrosine with the nitrating systems nitrite/hydrogen peroxide/horseradish peroxidase and nitrite/hypochloric acid. Arch. Biochem. Biophys. 393: 245-254. https://doi.org/10.1006/abbi.2001.2494
  48. Roncone R, Barbieri M, Monzani E, Casella L. 2006. Reactive nitrogen species generated by heme proteins: mechanism of formation and targets. Coord. Chem. Rev. 250: 1286-1293. https://doi.org/10.1016/j.ccr.2005.11.015

Cited by

  1. The molecular mechanism of the photocatalytic oxidation reactions by horseradish peroxidase in the presence of histidine vol.22, pp.18, 2017, https://doi.org/10.1039/d0gc01972k
  2. Effects of chronic nitrate exposure on the intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot (Scophthalmus maximus) vol.207, pp.None, 2017, https://doi.org/10.1016/j.ecoenv.2020.111287
  3. Biophysical characterization of the inactivation of E. coli transketolase by aqueous co-solvents vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-03001-8