DOI QR코드

DOI QR Code

Effects of interaction between SLC12A3 polymorphism, salt-sensitive gene, and sodium intake on risk of child obesity

소금민감성 SLC12A3 유전자 다형성에 따른 나트륨섭취가 소아비만에 미치는 영향

  • Jung, Joohyun (Department of Food and Nutrition, Sungshin Women's University) ;
  • Lee, Myoungsook (Department of Food and Nutrition, Sungshin Women's University)
  • 정주현 (성신여자대학교 식품영양학과) ;
  • 이명숙 (성신여자대학교 식품영양학과)
  • Received : 2017.01.11
  • Accepted : 2017.02.02
  • Published : 2017.02.28

Abstract

Purpose: Obesogenic environments in children, in particular excessive intake of sodium, generate hypertension, which is a major risk factor for chronic diseases. Methods: In all, 725 children, 379 boys and 373 girls, aged 8~9 years were recruited from seven elementary schools in Kuro-ku, Seoul. To evaluate whether or not obesity risk was modulated by salt-sensitive genes, Solute Carrier Familiy 12 member 3 (SLC12A3) was used as the target. After children were assigned into obese (BMI > 85 percentile) or non-obese groups, anthropometry, blood biochemistry, and dietary intakes were measured according to the genotypes GG (wild) or GA+AA (hetero+mutant). Results: Without gender differences, high TG and low HDLc were detected in the obese group compared to the non-obese group. Regardless of obesity, weight gain and blood pressure (BP) increased in the SLC12A3 GA+AA genotype rather than in the GG type. HDLc was associated with obesity risk without genotype difference. Odd ratios for risk of obesity were 15.57 (95% CI 2.192~110.654), 22.84 (95% CI 1.565~333.469), and 9.32 (95%CI 1.262~68.817) in boys and girls with GA+AA genotypes as sodium intake increased above 4,000 mg/day. Dietary calcium, sodium, folate, and vit C were associated with obesity risk according to gender or genotype differences. Since high folate intake reduced obesity risk in only boys with GG type. Risk for overweight and obesity increased in boys with GA+AA genotypes and dietary habits with high sodium and cholesterol and low folate. Conclusion: The A allele of SLC12A3 rs11643718 was sensitive to development of obesity in children as sodium intake increased.

소아기의 과체중 혹은 비만은 성인기의 만성질환의 onset 위험을 증가시키는 대사이상을 야기하므로 관련된 obesogenic 환경 (나트륨 섭취 등)을 제어할 필요가 있다. 본 연구에서는 소아기의 과도한 소금섭취가 신장의 재흡수 기능을 조절하는 SLC12A3기능장애로 이어져 고혈압 및 비만을 야기하는지를 확인하고자 하였다. 서울 구로구에 소재한 8~9세 초등학생 752명 (남학생: 379명 여학생: 373명)을 대상으로 BMI가 85 percentiles이상을 비만군으로, 이하를 정상군으로 분류하였다. SLC12A3 rs11643718 유전자형은 GG (wild)와 GA + AA로 분류하여 신체계측, 혈액검사, 식이조사 등을 비교분석하였다 대상자의 남아가 여아보다, 비만군이 정상군보다 신체지수, 혈액지수, 식사섭취량이 여아보다 높았다. 남녀 모두 비만군에서 높은 TG와 낮은 HDLc를 보여주었지만 비만한 남아는 혈압에, 비만한 여아는 인슐린저항성에 더 민감한 반응을 보였다. 비록 남녀차이는 있지만 비만군 및 정상군 모두에서 SLC12A3의 GA + AA형이 GG형보다 혈압과 체중이 높았다. GG 유전자형을 가지고 있는 소아는 혈중 LDLc, FBS, insulin등이 높거나 식이 콜레스테롤섭취가 증가할수록 비만이 될 위험도가 증가하였고 엽산의 섭취가 증가할수록 비만위험도는 감소하였다. 반면, GA + AA 유전자형을 가지고 있는 소아는 고나트륨 (> 4,000 mg/day)섭취시 비만위험도 (odd ratio)가 15.57배 증가하였고 남아 (22.84배)에서 더욱 위험도가 높았다. HDLc의 경우는 유전자형에 관계없이 증가할수록 비만위험도가 감소하였다. 결론적으로 SLC12A3 (rs11643718) 유전자의 A allele를 가진 형이 나트륨에 특이적으로 반응하여 과체중위험을 증가시키는 것으로 생각된다.

Keywords

References

  1. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3). Cheongwon: Korea Centers for Disease Control and Prevention; 2013.
  2. Oh K, Jang MJ, Lee NY, Moon JS, Lee CG, Yoo MH, Kim YT. Prevalence and trends in obesity among Korean children and adolescents in 1997 and 2005. Korean J Pediatr 2008; 51(9): 950-955. https://doi.org/10.3345/kjp.2008.51.9.950
  3. Korean Educational Development Institute. Statistics of school health examination survey: 2011. Seoul: Korean Educational Development Institute; 2011.
  4. Kim JH, Kim EK. The relationship among insulin resistance, blood profiles and nutrient intake in overweight or obese children and adolescents. Korean J Community Nutr 2012; 17(5): 530-542. https://doi.org/10.5720/kjcn.2012.17.5.530
  5. Styne DM. Childhood and adolescent obesity. Prevalence and significance. Pediatr Clin North Am 2001; 48(4): 823-854. https://doi.org/10.1016/S0031-3955(05)70344-8
  6. Lee HH, Choi SK, Seo JS. Obesity index and related factors among elementary school students visiting pediatric department of general hospital. J Korean Diet Assoc 2012; 18(2): 186-199. https://doi.org/10.14373/JKDA.2012.18.2.186
  7. Lee SK, Kim MK. Relationship of sodium intake with obesity among Korean children and adolescents: Korea National Health and Nutrition Examination Survey. Br J Nutr 2016; 115(5): 834-841. https://doi.org/10.1017/S0007114515005152
  8. Yoon YS, Oh SW. Sodium density and obesity; the Korea National Health and Nutrition Examination Survey 2007-2010. Eur J Clin Nutr 2013; 67(2): 141-146. https://doi.org/10.1038/ejcn.2012.204
  9. Lee M, Kim MK, Kim SM, Park H, Park CG, Park HK. Gender-based differences on the association between salt-sensitive genes and obesity in Korean children aged between 8 and 9 years. PLoS One 2015; 10(3): e0120111. https://doi.org/10.1371/journal.pone.0120111
  10. Lee J, Lee H, Kim K, Park JH, Kim S, Oh J. A higher salt intake leads to a lower rate of adequate blood pressure control. J Korean Med Sci 2014; 29 Suppl 2: S103-S108.
  11. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 1988; 297(6644): 319-328. https://doi.org/10.1136/bmj.297.6644.319
  12. Libuda L, Kersting M, Alexy U. Consumption of dietary salt measured by urinary sodium excretion and its association with body weight status in healthy children and adolescents. Public Health Nutr 2012; 15(3): 433-441. https://doi.org/10.1017/S1368980011002138
  13. Hoffmann IS, Cubeddu LX. Salt and the metabolic syndrome. Nutr Metab Cardiovasc Dis 2009; 19(2): 123-128. https://doi.org/10.1016/j.numecd.2008.02.011
  14. World Health Organization. Guideline. Sodium intake for adults and children. Geneva: World Health Organization; 2012.
  15. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360(9349): 1903-1913. https://doi.org/10.1016/S0140-6736(02)11911-8
  16. He FJ, MacGregor GA. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet 2011; 378(9789): 380-382. https://doi.org/10.1016/S0140-6736(11)61174-4
  17. Brater DC. Pharmacology of diuretics. Am J Med Sci 2000; 319(1): 38-50. https://doi.org/10.1097/00000441-200001000-00004
  18. Fava C, Montagnana M, Rosberg L, Burri P, Almgren P, Jonsson A, Wanby P, Lippi G, Minuz P, Hulthèn LU, Aurell M, Melander O. Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure. Hum Mol Genet 2008; 17(3): 413-418. https://doi.org/10.1093/hmg/ddm318
  19. Melander O, Orho-Melander M, Bengtsson K, Lindblad U, Rastam L, Groop L, Hulthen UL. Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman's syndrome and primary hypertension. Hypertension 2000; 36(3): 389-394. https://doi.org/10.1161/01.HYP.36.3.389
  20. Knoers NV, Levtchenko EN. Gitelman syndrome. Orphanet J Rare Dis 2008; 3(1): 22. https://doi.org/10.1186/1750-1172-3-22
  21. Hoorn EJ, Ellison DH. WNK kinases and the kidney. Exp Cell Res 2012; 318(9): 1020-1026. https://doi.org/10.1016/j.yexcr.2012.02.029
  22. Mercier-Zuber A, O'Shaughnessy KM. Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters. Curr Opin Nephrol Hypertens 2011; 20(5): 534-540. https://doi.org/10.1097/MNH.0b013e3283484b06
  23. McCormick JA, Mutig K, Nelson JH, Saritas T, Hoorn EJ, Yang CL, Rogers S, Curry J, Delpire E, Bachmann S, Ellison DH. A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab 2011; 14(3): 352-364. https://doi.org/10.1016/j.cmet.2011.07.009
  24. Castañeda-Bueno M, Gamba G. Mechanisms of sodium-chloride cotransporter modulation by angiotensin II. Curr Opin Nephrol Hypertens 2012; 21(5): 516-522. https://doi.org/10.1097/MNH.0b013e32835571a4
  25. Arroyo JP, Lagnaz D, Ronzaud C, Vazquez N, Ko BS, Moddes L, Ruffieux-Daidie D, Hausel P, Koesters R, Yang B, Stokes JB, Hoover RS, Gamba G, Staub O. Nedd4-2 modulates renal Na+-Cl-cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 2011; 22(9): 1707-1719. https://doi.org/10.1681/ASN.2011020132
  26. Moon JS, Lee SY, Nam CM, Choi JM, Choe BK, Seo JW, Oh K, Jang MJ, Hwang SS, Yoo MH, Kim YT, Lee CG. 2007 Korean National Growth Charts: review of developmental process and an outlook. Korean J Pediatr 2008; 51(1): 1-25. https://doi.org/10.3345/kjp.2008.51.1.1
  27. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
  28. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412-419. https://doi.org/10.1007/BF00280883
  29. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 1997; 65(4 Suppl): 1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S
  30. Magnussen CG, Thomson R, Cleland VJ, Ukoumunne OC, Dwyer T, Venn A. Factors affecting the stability of blood lipid and lipoprotein levels from youth to adulthood: evidence from the Childhood Determinants of Adult Health Study. Arch Pediatr Adolesc Med 2011; 165(1): 68-76. https://doi.org/10.1001/archpediatrics.2010.246
  31. Cesa CC, Sbruzzi G, Ribeiro RA, Barbiero SM, de Oliveira Petkowicz R, Eibel B, Machado NB, Marques R, Tortato G, dos Santos TJ, Leiria C, Schaan BD, Pellanda LC. Physical activity and cardiovascular risk factors in children: meta-analysis of randomized clinical trials. Prev Med 2014; 69: 54-62. https://doi.org/10.1016/j.ypmed.2014.08.014
  32. Marcovecchio ML, Mohn A, Chiarelli F. Obesity and insulin resistance in children. J Pediatr Gastroenterol Nutr 2010; 51 Suppl 3: S149-S150. https://doi.org/10.1097/MPG.0b013e3181f853f9
  33. Bahrami E, Mirmoghtadaee P, Ardalan G, Zarkesh-Esfahani H, Tajaddini MH, Haghjooy-Javanmard S, Najafi H, Kelishadi R. Insulin and leptin levels in overweight and normal-weight Iranian adolescents: the CASPIAN-III study. J Res Med Sci 2014; 19(5): 387-390.
  34. Del Mar Bibiloni M, Maffeis C, Llompart I, Pons A, Tur JA. Dietary factors associated with subclinical inflammation among girls. Eur J Clin Nutr 2013; 67(12): 1264-1270. https://doi.org/10.1038/ejcn.2013.196
  35. Garcia OP, Ronquillo D, Caamano Mdel C, Camacho M, Long KZ, Rosado JL. Zinc, vitamin A, and vitamin C status are associated with leptin concentrations and obesity in Mexican women: results from a cross-sectional study. Nutr Metab (Lond) 2012; 9(1): 59. https://doi.org/10.1186/1743-7075-9-59
  36. Wang YL, Qi Y, Bai JN, Qi ZM, Li JR, Zhao HY, Wang YF, Lu CZ, Xiao Y, Jia N, Wang B, Niu WQ. Tag polymorphisms of solute carrier family 12 member 3 gene modify the risk of hypertension in northeastern Han Chinese. J Hum Hypertens 2014; 28(8): 504-509. https://doi.org/10.1038/jhh.2013.134
  37. Gopinath B, Flood VM, Burlutsky G, Louie JC, Baur LA, Mitchell P. Dairy food consumption, blood pressure and retinal microcirculation in adolescents. Nutr Metab Cardiovasc Dis 2014; 24(11): 1221-1227. https://doi.org/10.1016/j.numecd.2014.05.014
  38. Yuan WL, Kakinami L, Gray-Donald K, Czernichow S, Lambert M, Paradis G. Influence of dairy product consumption on children's blood pressure: results from the QUALITY cohort. J Acad Nutr Diet 2013; 113(7): 936-941. https://doi.org/10.1016/j.jand.2013.03.010
  39. Yang SJ, Kim S, Park H, Kim SM, Choi KM, Lim Y, Lee M. Sex-dependent association between angiotensin-converting enzyme insertion/deletion polymorphism and obesity in relation to sodium intake in children. Nutrition 2013; 29(3): 525-530. https://doi.org/10.1016/j.nut.2012.09.001
  40. Enquobahrie DA, Feldman HA, Hoelscher DH, Steffen LM, Webber LS, Zive MM, Rimm EB, Stampfer MJ, Osganian SK. Serum homocysteine and folate concentrations among a US cohort of adolescents before and after folic acid fortification. Public Health Nutr 2012; 15(10): 1818-1826. https://doi.org/10.1017/S1368980012002984
  41. Hoey L, McNulty H, Askin N, Dunne A, Ward M, Pentieva K, Strain J, Molloy AM, Flynn CA, Scott JM. Effect of a voluntary food fortification policy on folate, related B vitamin status, and homocysteine in healthy adults. Am J Clin Nutr 2007; 86(5): 1405-1413. https://doi.org/10.1093/ajcn/86.5.1405
  42. Gallistl S, Sudi K, Mangge H, Erwa W, Borkenstein M. Insulin is an independent correlate of plasma homocysteine levels in obese children and adolescents. Diabetes Care 2000; 23(9): 1348-1352. https://doi.org/10.2337/diacare.23.9.1348
  43. Ullegaddi R, Powers HJ, Gariballa SE. B-group vitamin supplementation mitigates oxidative damage after acute ischaemic stroke. Clin Sci (Lond) 2004; 107(5): 477-484. https://doi.org/10.1042/CS20040134
  44. Folsom AR, Desvarieux M, Nieto FJ, Boland LL, Ballantyne CM, Chambless LE. B vitamin status and inflammatory markers. Atherosclerosis 2003; 169(1): 169-174. https://doi.org/10.1016/S0021-9150(03)00161-8
  45. Voutilainen S, Virtanen JK, Rissanen TH, Alfthan G, Laukkanen J, Nyyssonen K, Mursu J, Valkonen VP, Tuomainen TP, Kaplan GA, Salonen JT. Serum folate and homocysteine and the incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2004; 80(2): 317-323. https://doi.org/10.1093/ajcn/80.2.317

Cited by

  1. Salt-sensitive genes and their relation to obesity vol.50, pp.3, 2017, https://doi.org/10.4163/jnh.2017.50.3.217
  2. Impacts of High Sodium Intake on Obesity-related Gene Expression vol.28, pp.5, 2017, https://doi.org/10.17495/easdl.2018.8.28.5.364
  3. Metabolomics Associated with Genome-Wide Association Study Related to the Basal Metabolic Rate in Overweight/Obese Korean Women vol.22, pp.5, 2017, https://doi.org/10.1089/jmf.2018.4310
  4. Beiging Modulates Inflammatory Adipogenesis in Salt-Treated and MEK6-Transfected Adipocytes vol.10, pp.5, 2017, https://doi.org/10.3390/cells10051106