
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, Feb. 2017 1234
Copyright ⓒ2017 KSII

Extracting the Source Code Context to
Predict Import Changes using GPES

Jaekwon Lee1, Kisub Kim1, Yong-Hyeon Lee2, Jang-Eui Hong3,

Young-Hoon Seo1, Byung-Do Yang4 and Woosung Jung5
1 Department of Computer Engineering, Chungbuk National University,

3 Department of Computer Science, Chungbuk National University,
4 Department of Electronics Engineering, Chungbuk National University,

Cheong-ju, South Korea
[e-mail: {exatoa, falcon, jehong, yhseo, bdyang}@cbnu.ac.kr]

2 Neowiz Games, Seongnam, South Korea
[email : gd9live@neowiz.com]

5 Graduate School of Education, Seoul National University of Education,
Seoul, South Korea

[e-mail: wsjung@snue.ac.kr]
*Corresponding author: Woosung Jung

Received September 11, 2016; revised February 5, 2016; accepted February 27, 2017;

published February 28, 2017

Abstract

One of the difficulties developers encounter in maintaining tasks of a large-scale software
system is the updating of suitable libraries on time. Developers tend to miss or make mistakes
when searching for and choosing libraries during the development process, or there may not be
a stable library for the developers to use. We present a novel approach for helping developers
modify software easily and on time and avoid software failures. Using a tool previously built
by us called GPES, we collected information of projects, such as abstract syntax trees, tokens,
software metrics, relations, and evolutions, for our experiments. We analyzed the contexts of
source codes in existing projects to predict changes automatically and to recommend suitable
libraries for the projects. The collected data show that researchers can reduce the overall cost
of data analysis by transforming the extracted data into the required input formats with a
simple query-based implementation. Also, we manually evaluated how the extracted contexts
are similar to the description and we found that a sufficient number of the words in the
contexts is similar and it might help developers grasp the domain of the source codes easily.

Keywords: source code change, context analysis, library recommendation, software
repository, extracting model

A preliminary version of this paper was presented at APIC-IST 2016, and was awarded as an outstanding paper.
This version additionally includes a extracting source code context to predict import changes. This work was
supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No.
2015R1C1A1A01054994, No. 2014M3C4A7030505).

https://doi.org/10.3837/tiis.2017.02.035 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1235

1. Introduction

Software maintenance accounts for most of the life cycle of software, and it is an expensive
and time-consuming task [1]. If the maintenance of software is not done on a timely basis, it
becomes impossible to prevent serious failures, and users will mistrust the software as well.
However, predicting source code changes and recommending those changes to developers
would resolve these problems and even improve the productivity and reliability of software
projects. A recent study of the recommendation of source codes, libraries and components
supports increasing the efficiency of development by mining data from version control
systems (VCS) such as Git [2] and SVN [3]. Work by Ying helped to find suitable code
snippets to meet the needs of developers by mining the patterns of source codes that frequently
change together from each revision in VCS [4], and Zhong suggested a mining approach
which helps developers find libraries easily by mining API usages [5]. Furthermore, a
recommendation system for code snippets which collaborates the results of several code
search engines and a heuristic algorithm was presented by Inoue [6]. Systems responding to
user queries as in the approaches proposed above improved the precision of the system that
recommends appropriate libraries. However, developers do not feel it necessary to search for
new version of libraries unless an event occurs in an existing project. When they realize the
necessity to update and search for certain libraries, a loss of information can occur often during
the process of translating the images in mind into keywords for a query [7]. Moreover, because
libraries which did not gain recognition by search engine algorithms [8] exist, it may be
difficult to investigate the specific libraries desired by developers. For example, developers
utilize a library, ListView, with numerous customizations for faster scrolling in the early
stages of an Android project. RecyclerView, which is a container added to support various
features of a previous version, retains a limited number of views to provide effective scrolling,
meaning developers no longer have to customize ListView [9]. Similarly, the calendar class of
JDK1.1 reduces the amount of realization for the partial inheritance extension class of
JDK1.0.1 [10]. Developers who do not know these facts may use ListView instead of
RecyclerView and use a Date class instead of a Calendar class, respectively, and thus incur a
higher cost.

In this paper, we propose an overall approach for resolving the problems developers
encounter in maintaining tasks of large-scale software systems by the updating of suitable
libraries on time: predicting and recommending suitable libraries so that source codes can be
imported. However, because of the need for accuracy in the extraction, we focused on
analyzing the context of source codes in projects only to predict changes in codes
automatically. The method we propose assumes that the developers do not need the library at
the given time, that they missed it upon searching, or that they were not able to consider
security and reliability. We explore changes in libraries imported into each source code with
the evolution of the project and map the contexts between the points of changes in the libraries.
By clustering and integrating this information, we extract the context of change imports for a
specific library. We propose a tool called the General Purpose Extractor for Source Code
(GPES) that extracts information about the structure, evolution, and quality from the Git
repository to help researchers undertake source code analyses in various studies [11]. We
collected data from twelve projects that were extracted by the GPES from GitHub and used
these data to extract the contexts for revising import information. For the experiments, we
obtained 568 revision sets from 5,909 revision in the projects.

1236 Jaekwon Lee et al.: Extracting the Source Code Context to Predict Import Changes using GPES

The main contributions of the proposed approach are as follows:
 The GPES is able to support researches related to the evolution processes of software on

various perspectives and levels by providing basic data such as structure, change, and
quality information of the source codes that extracted from software repositories.

 Since GPES automatically extracts appropriate software information for the proposed
schema, it can process necessary data for analysis in various forms with low cost queries.

 The proposed approach can help to predict future source code changes by analyzing the
change pattern of the source code that is dependent on the import statements.

In this paper, we initially explore related studies in Section 2. In Section 3, the detailed
processes used during the proposed approach are explained. Section 4 demonstrates our
previously built tool. In section 5, experiments and case studies are presented. Lastly, we
conclude our discussion with recommendations for future work in section 6.

2. Related Work

2.1 Context analysis and extraction
Studies that determine topics and domains with the contexts from source codes and that
automatically generate summaries and software documents through a source code analysis
have allowed made researchers to be able to investigate software from the perspective of
evolution by comparing the contexts of each revision.

Maskeri et al. proposed a human-assisted approach [12] based on the investigated latent
Dirichlet allocation (LDA) scheme for extracting domain topics from source code. LDA is a
statistical method that has emerged as a popular technique for discovering domains and topics.
Their method was applied to a number of open source systems, with the preliminary results
indicating that LDA can identify several domains and topics. Furthermore, they suggested the
method as a starting point for the additional manual refinement of topics.

With regard to better software maintenance and reuse methodologies, Hill et al. presented
an approach [13] that extracts natural language phrases automatically from existing source
code identifiers and categorizes the phrases into results in a hierarchy. Using this method,
developers can explore word usage in pieces of actual code, identify relevant program
elements to investigate, and recognize replaceable words for query reformulations. The
empirical results with 22 developers showed that their method significantly outperforms
others.

Using identifier names and comments from source codes to find topics, domains, and
objectives was proposed by Kuhn et al. in 2007 [14]. They also applied the names of classes
and packages to the computation of similarities using LSI to support the quality of the results.

Programmers use documents to understand software codes. However, according to an
approach proposed by McBurney et al. [15], most software documents are written by humans
in what is a time-consuming task as well. Therefore, McBurney et al. proposed a source code
summarization technique that involves the writing of a description of each method of source
code in Java after an analysis of the invocations. They compared the method to summaries
written by humans and to a state-of-the-art method, demonstrating improvements over the
state-of-the-art method in several dimensions.

2.2 Source code changes
In most software projects, a number of revisions are generated from creation to elimination.
Developers update the versions of the source codes for various purposes, such as fixing bugs,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1237

improving the speed or quality, and reducing the complexity. Research about source code
changes is important in the software field, and numerous researchers work in this area.

We presented an approach to extract a developer’s share of code in 2015. In that paper, we
focused on diff values discovered by analyzing each code change. We broke down the source
codes of each revision to abstract syntax tree to calculate the developer’s share of codes and to
analyze the systems effectively at the source code level [16].

Tao et al. [17] explained how software engineers understand code changes with actual
examples, a number of surveys and common development scenarios. They found that the
determination of the change risk is very important for understanding the changes and crucial
needs for assessing the quality of a change, also finding that the quality of the description can
affect the efforts to understand changes later. The paper ends with several suggestions
indicating that engineers should understand the importance of change descriptions and should
be responsible for providing more information.

In a paper written by Nguyen et al. [18], repetitiveness was defined as the ratio of repetitive
changes over all changes, modelling a change as a pair of old and new ASTs within a method.
They reported three findings. The repetitiveness of changes could increase by 70-100% in
minor cases, and it decreases as the size increases, becoming higher and more stable in a
cross-project setting, with the fixing of changes repeating similarly to general changes. The
results of their learning and recommending system returned a value of about 30%, indicating
that repeated the fixing of changes could be quite useful as a means of automatic software
repair as well.

Discovering and identifying unknown change patterns were the purposes of Negara’s study
[19]. They applied a fine-grained sequence of code changes and found that their algorithm
could handle challenges that distinguish continuous code change patterns using data mining
techniques. In the evaluation phase, 1,520 hours of code development were collected from 23
developers, with the main result showing that the method was sufficiently effective and that it
scales to large amounts of data.

2.3 Library searches and recommendations
Research on retrieving and recommending libraries and components to improve the
productivity and quality of projects has been ongoing for more than a decade.

An approach proposed by Thung was a recommendation system for various APIs. The
system is divided into two parts; one uses association rule mining and the other uses
collaborative filtering. Each part of the system recommends a list of libraries and the
aggregator then integrates the lists by means of heuristic weighting. To evaluate the approach,
the researchers conducted ten-fold validation and consequently obtained a recall rate of
approximately 80% [20].

In research for better reuse outcomes, Kalia et al. split the external factors of function,
technology, integration framework, interoperability, portability, and non-functional
characteristics, as well as the internal factors of encapsulation, the component type,
architectural aspects, and accessibility to the source code. They then explained the
improvement by the approach in terms of searching, understanding the components and in
terms of detailed specifications [21].

Understanding suitable libraries or components by specific developers was also mentioned
by Aziz et al. They tagged queries to names of classes and methods and then used a clone
detection technique to construct patterns for code features. Subsequently, the system searched
for components from libraries based on the clone patterns and finally applied a program slicing
technique to help developers understand the retrieved components [22].

1238 Jaekwon Lee et al.: Extracting the Source Code Context to Predict Import Changes using GPES

3. Extracting Change Context
In this paper, we propose a method that extracts contexts for recommending potential libraries
to a currently existing project. The architecture of the method is shown in Fig. 1. If an input Rx
which is a revision of a current project enters into the system, the system extracts from Rx to
Rx-t, which is a proximate revision, as a RS (revision set) from the source code repository.
After we extract all of the revisions of the RS, the system manufactures them to generate the
Change Context. We treat a context from the first revision as a Base Context and compute the
differences in the contexts from the second revision to the final revision, after which we
integrate each of them to generate a Change Context.

The following figure explains the details of the extraction and the final purpose of the study.

Fig. 1. The overview of library recommendation system with code context changes

3.1 Generating a Change Context
One RS has context information about a change that occurred up to the point of import. The
Change Context contains the entire context of one RS and is constructed by integrating the
contexts of the source codes from each revision.

We construct the context of each revision of the source code using word tokens extracted
from the class, method, and variable names. The names represented in the source code
represent their roles. There are two types of conventions: the camel case and the snake case.
Developers usually apply these naming conventions to their codes, and occasionally they do
not follow the conventions, such as convertUTFtoASCII, NEGATIVEDECIMALTYPE, and
actionparameters. To solve this mixed-case splitting problem, Enslen et al. suggested Samurai
[23], which is a tool that separates names of classes, methods, and variables to tokens based on
mining approach. Samurai uses program-specific and global frequency tables to determine the
split point of a mixed-case name extracted from 9,000 open-source projects. We apply this
form of tokenizing and then remove the stopwords. Stopwords are those words that are very
common in most documents such as a, an, the, is, at, and which, among others.

To combine the contexts of the revisions, we define the change context structure. The
Change Context consists of three parts, a Base, an ADDED context, and a DELETED context.
A Base context is a list of tokens with its count extracted from the first revision of the RS. To
create an ADDED and DELETED context, we calculate the context differences between two

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1239

revision sequences. The context differences have ADDED and DELETED tokens. We merged
all context differences into one Change Context. When merging all contexts, we consider the
count. Fig. 2 shows an example of the structure of a Change Context. The Base context has
three file tokens and the ADDED context has one file token, indicating that the final state of
this file has four file tokens.

{
 “Base”:{“List”:5, “load”:1, “file”:3 …},
 “ADDED”:{“save”:1, “convert”:1, “file”:1},
 “DELETED”:{}
}

Fig. 2. An example of a Change Context

3.2 Build Library Repository
To recommend libraries, the mapping information of libraries related to the changed context is
necessary. In this subsection, we report a means of mapping between the extracted RS from an
existing project repository and a library.

The RS is defined as a set of revisions between one revision that has an import change in a
certain source code and the other revision that has the next import change. Fig. 3 shows that
the revisions in a source code repository. When the revisions were changed from R1 to R6 in a
regular sequence, and if there were import changes R3 and R6, RS1= {R1, R2}, RS2= {R3, R4,
R5}, at this point of the phase, we need information about the library and mapping RSs from
the repository to recommend libraries. Because the information pertaining to the library exists
on R3 and R6, which have actual import changes, the system should expand and include R3 and
R6 in RS1 and RS2, respectively. For the last revisions R3 and R6, we extract the changed
import information and map to the context.

Fig. 3. An example of a revision set in a source code repository

Some of the extracted RSs are not useful. Regarding the changes in each revision, there is

information related to a library change as well as unrelated information. Specifically, when
multiple changes occur at once, it is difficult to classify them if there is any relationship
between the libraries and the contexts. Therefore, we exclusively consider RSs that have only
one library change for recommendations.

During the development process, developers make multiple branches, and the revision
history has a graph of all the branches. Algorithm 1 shows the pseudo code used for extracting
the RSs of a specific file, given FilePath as a parameter, using a depth-first search (DFS). The
algorithm gets a graph information via calling a getAllRevisionsChildren module and
generates the RSs through a module termed SearchRS, which explore the nodes recursively.
The module requires two parameters. The first parameter is the StartNode, which is the first

1240 Jaekwon Lee et al.: Extracting the Source Code Context to Predict Import Changes using GPES

revision of the file; and the last one is RSPath, which is a sequence of nodes that will be
included in the current RS. The module SearchRS calculates the differences in the import
information between all the node pairs in the current node. If there are no differences, it moves
to a child node while retaining the status of the parameters. If this is not the case, it moves to
the child node after initializing RSPath. In the condition set up here, only one different import
change occurs, and the modules build a RS and retain it. If the system goes back and forth
during the process above until visiting all the leaf nodes are visited, it generates every RSs for
the file.

To determine the import difference between neighboring nodes, the system obtains an
import list of all nodes and compares them. This can be done during the DFS exploration step,
but the performance must be considered. Thus, making the calculation after obtaining the
import differences between neighboring nodes via a module termed makeAllRevisionsDiff is a
better method. The module utilizes a breadth-first search (BFS) approach to search for
neighboring nodes.

Algorithm 1. makeRevisionSet(FilePath, StartNode)

Diffs = makeAllRevisionsDiff(FilePath, StartNode)
ChildrenList = getAllRevisionsChildren(FilePath)
RevisionSets = list()
visited = dictionary()
SearchRS(StartNode, list())
return RevisionSets

function SearchRS(node, RSPath):
 if node in visited then return
 RSPath += node
 visited[node] = True
 children = ChildrenList[node]
 if length(children) == 0 then return

 for child in children do
 diff = Diffs[node][child]

 if isNoChanged(diff) is True then
 SearchRS(child, RSPath)
 else
 if isOneChanged(diff)then
 RevisionSets += RS(RSPath+child, diff)
 end if
 SearchRS(child, list())
 end if
 end for
end function

4. GPES (General Purpose Extractor for Source Code)
In this section, to support a general purpose analysis of source codes, we previously proposed
a tool known as GPES to extract raw data such as the version, abstract syntax tree (AST),
differences, and metrics of the source code from the Git repository and then to store the data in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1241

a predefined schema. GPES provides flexible customization of the data source for MSR
researchers based on the extraction tool and the schema. Our tool can be differentiated from
the state-of-the-art tool BOA [24] in terms of how it supports revision history information,
revision snapshots, and various software metrics for multiple levels of source code.

4.1 Extraction Process
The overall process of GPES consists of three phases, as shown in Fig. 4.

Fig. 4. Overall process of GPES

The first phase is the process of extracting the structure data, such as revisions, files, and

ASTs, from the source codes. By analyzing the logs from a cloned remote repository, this
phase starts with the storing of metadata and history graphs of revisions, after which it saves
the metadata and textual data of the files extracted from each revision. Our tool generates
ASTs from the source codes using Eclipse JDT and then stores all AST nodes with the data
types and their inheritance information.

In the next phase, our tool extracts evolution data that corresponds to the changesets of the
files, the code lines, and the nodes of the ASTs by comparing the two revisions. The
changesets of the files and lines can be gained by parsing the line-level-diff results, whereas
the changeset for AST is extracted through a comparison between each node of the AST and
the results calculated by word-level-diff.

Finally, using an external static analysis utility called Understand, our tool extracts the
quality data measured by various software metrics for objects such as files, packages, classes,
and methods. If the measured object is an overloaded method or an anonymous class, the
objects are mapped in order of appearance in the metric results because the qualified name
conflicts with others.

4.2 Database Schema
The database schema of GPES has three models for the structure, evolution, and quality
associated with each extraction phase. Fig. 5 shows tables of each model and the relationships

1242 Jaekwon Lee et al.: Extracting the Source Code Context to Predict Import Changes using GPES

among them within our schema. The structure model includes tables for revisions, developers,
files, and ASTs. We store the metadata of the versions in Revision and the ordering
relationship between two revisions in RevisionHistory. Because only a few files are changed in
each revision, all files of each version are saved as File and FileContent by separating them
into the metadata of files and their own content, respectively. ASTNode contains node
elements such as declaration, expression, statement, and the identifier of the AST. Type and
Inheritance, on the other hand, correspondingly include primitive and object-oriented data
types and their inherited relationships. The evolution model consists of the three tables of
FileDiff, LineDiff, and NodeDiff, which are matched with differences between files, code lines,
and AST nodes. The quality model has two tables; one is MetricObject, which links objects
corresponding to packages, files, classes, and methods to be measured by metrics; the other is
MetricValue, which contains various metric counts for each object.

Fig. 5. Database schema

5. Experiments
We conducted case studies to evaluate what types of research areas GPES can cover and how
much the cost can be reduced in the phases for the previous study and the accuracy of
recommendation for the currently proposed approach. We chose the Okio project, which is
based on the Java language and which satisfies the conditions of the upper five releases, five
contributors, and 1000 stars among the projects, as the target.

5.1 Input Data Processing
To validate the possibility of supporting various research areas, we extracted evolution metrics
[25], developer expertise [20], change coupling [26], and source code differencing [27] from
previous studies using our tool, GPES. Fig. 6 shows visualizations of parts of the data from
each type of research.

(a) shows the change histories of the lines of code (LOC), the number of files, and the sum
of the file sizes as revision changes. (b) represents the number of AST nodes in each package
that each developer changed. (c) shows the number of changed files, classes, and methods per
class. The number of added methods in existing classes for each revision is signified in (d).
Based on these visualizations, we can analyze the patterns or trends in the data, such as
developer expertise. Thus, the GPES schema can provide plenty of data to study the MSR
through processing with queries.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1243

(a) Sizes of the code, file and project for each

revision

(b) Developer expertise for each package

(c) Changed classes, files, and methods for

each revision

(d) Added methods in a class for each revision

Fig. 6. Visualization results for input data for each part of the research on the Okio project

5.2 The Cost of Data Processing
As a means of demonstrating the effectiveness of our tool, we estimated the cost of
preprocessing by queries to obtain the data with which to study the MSR using GPES. Table 1
shows the statistics for the SELECT queries, the tables used, and other queries (e.g., CREATE,
INSERT, UPDATE, CURSOR). We used five tables, two to three SELECT queries, and six other
queries on average. Therefore, it was found to be more effective to deal with data using GPES
than to process the data directly from a repository.

Table 1. Usage Counts for Query and Table for Each Research Subject

Subject SELECT
queries

Used
tables

Other
queries

Evolution metrics [25] 5 3 4
Developer Expertise [20] 2 6 10
Change Coupling [26] 1 4 10
Source code differencing [27] 1 5 0

5.3 Performance of the extraction
The time complexity of the algorithm that we proposed to analyze a code revision graph is
O(|𝐸|), where 𝐸 is a set of edges that is represented the relationships between revisions. The
performance of Algorithm 1 depends on two modules, makeAllRevisionsDiffs and SearchRS,
which are implemented based on BFS and DFS techniques, respectively. These techniques
have a time complexity of O(|𝑉| + |𝐸|) for vertex set 𝑉 and edge set 𝐸 when the algorithm
retrieves all vertices as a starting point. However, because our algorithm only needs to retrieve
a graph from a first revision vertex, the performance of the algorithm depends on the number

1244 Jaekwon Lee et al.: Extracting the Source Code Context to Predict Import Changes using GPES

of edges. Fig. 7 shows a graph of the execution time for the algorithm that increases linearly as
the number of edges increases. This means that we can extract RSs in finite time if we do not
analyze files with enough revisions to cause a stack overflow.

Fig. 7. The performance of the RS extracting algorithm

5.4 The Extraction of Context
We manually evaluated the part for extracting contexts from source codes based on import
changes.

First, we used Samurai tool that enables researchers to extract tokens. For using the Samurai,
we need global frequency table that uses tokens from a large number of projects. Because
GPES had a limitation on the speed, we partially used Boa Infrastructure. Consequently, we
collected 7,988 open source projects in GitHub while Enslen collected 9,000 open source
projects.

For evaluating the performance of extraction for change context, we extracted 10,420 RSs
from 12 projects extracted by GPES. We filtered out the noise from RSs with no tokens and
RSs only contains the BASE contexts as the pre-processing step. Manual evaluation was
conducted with 586 RSs and 211 libraries. The experiment was confirming the existence of
intersections between contexts from library descriptions and change contexts.

Table 2 shows the results for a simple output and a comparison. We considered all 211
libraries manually and discovered that which libraries may be imported into specific revisions
through analyzing the point of changing contexts. Furthermore, if the number of intersections
actual description is higher than three, the context we extracted is indicated the domains and
topics of the libraries.

5.5 Threats to validity
We had the following threats to validity in our experiments.

Since our approach only utilizes code change histories, inferring the immediate cause for
the code change or recommending another version of the same library are difficult. For
example, suppose we have two same libraries with different version and one resolved a
vulnerability and the other did not. If we extract the context from the codes that used the two
libraries, we cannot recognize the difference between the two libraries. Likewise, the RS
context does not fully reflect the inside of a particular library. This limitation can be resolved

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1245

by appending information such as analyzed commit messages or descriptions for the libraries.
However, a commit message accumulated along with a revision set can cause confusion in the
RS context for the library. We therefore, limited this study to extracting the context from the
statistical data obtained from the GPES-based source code.

The experiment was conducted based on the data extracted from the GPES; which was
implemented for Java languages although it designed for the general purpose. This can result
in being biased for a particular language. However, since our approach creates contexts based
on information available from code identifiers, it is more influenced by the naming
conventions of identifiers than by grammatical features. For this reason, experiments on other
languages are less important. Therefore, we have experimented only with the java language
and have focused on using GPES data for general purpose use. If users want to experiment
with other languages, they can add a parser for the language to the GPES to expand.

Table 2. The result for comparing tokens between change context and library description

Library Name

The number
of tokens

intersection
with

description

The count of
change context

tokens

The
percentage

of
intersection

java.lang.annotation.Annotation 10 1 10%

java.nio.MappedByteBuffer 29 3 10%

java.util.logging.Logger 21 3 14%

java.io.Closeable 10 1 10%

com.corundumstudio.socketio.Configuration 22 6 27%

com.corundumstudio.socketio.parser.Packet 11 3 27%

com.corundumstudio.socketio.ack.AckManager 16 4 25%

java.util.regex.Pattern 76 11 14%

org.jboss.netty.channel.Channel 27 3 11%

com.corundumstudio.socketio.handler.PacketHandler 30 4 13%

java.util.zip.Deflater 22 5 23%

java.io.Flushable 10 3 30%

java.util.Random 203 27 13%

6. Conclusion
We proposed an overall approach for helping developers modify software easily and on time
to prevent software failures. We focused on analyzing the contexts of source codes in existing
projects to predict changes in the code automatically for this time. The method reported here
assumed several situations of problems during the development process. To resolve the
problems in the referenced situations, we extract the context of the change import for a specific
library by clustering and integrating the mapping information. We evaluated our approach
using our previously built tool GPES, with data collected from twelve projects that were
extracted by GPES from GitHub and then used these data to extract the contexts to predict the
import information. Our tool, GPES, offers several advantages. First, because GPES includes

1246 Jaekwon Lee et al.: Extracting the Source Code Context to Predict Import Changes using GPES

a relationship graph for each revision, it can be used to analyze a project with different
information between each revision. Second, it is advantageous to extract snapshot information
because it includes metadata for each revision relative to the current state-of-the-art method.
For the proposed approach, limitations such as including unintended and unrelated features in
the imported libraries when the system extracts the context of the revision set can arise. We
can resolve such limitations by integrating a bug tracking system to filter out unrelated context.
Because the system considers revision sets that have only one import change, a limitation
exists regarding the variety of environments as well. We will consider eliminating the
limitations and recommending the suitable libraries to the projects as our future work.
Furthermore, Expanding to revision sets that have more than one import change will support
developers in various environments as well.

References
[1] K. Bennett and V. Rajlich, “Software Maintenance and Evolution: a Roadmap,” in Proc. of the

Conference on the Future of Software Engineering, pp. 73-87, June 4-11, 2000.
Article(CrossRef Link).

[2] Git – fast version control system. Available from: http://git-scm.com
[3] Apache Subversion. Available from: http://subversion.apache.org
[4] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll, “Predicting source code changes by

mining change history,” IEEE Transactions on Software Engineering, vol. 30, no. 9, pp. 574-586,
September, 2004. Article (CrossRef Link).

[5] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining and Recommending API Usage
Patterns,” in Proc. of the 23rd European Conference on ECOOP, pp. 318-343, July 6-10, 2009.
Article (CrossRef Link).

[6] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where Does This Code Come from and Where Does
It Go? - Integrated Code History Tracker for Open Source Systems -,” in Proc. of the 34th Int.
Conference on Software Engineering, pp. 331–341, June 2-9, 2012. Article (CrossRef Link).

[7] D. Lucrédio, A. F. Do Prado, and E. S. De Almeida, “A survey on software components search and
retrieval,” in Proc. of the 30th Euromicro Conference, pp. 152-159, September 3-3, 2004.
Article (CrossRef Link).

[8] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking: Bringing Order
to the Web,” World Wide Web Internet Web Information System, vol. 54, no. 2, pp. 1–17, January
29, 1998. Article (CrossRef Link).

[9] Creating Lists and Cards, Available from: https://developer.android.com/training/material/lists-
cards.html

[10] M. Fowler, Refactoring: Improving the Design of Existing Code, 1st Edition, Addison-Wesley,
1999.

[11] J. Lee, Y. Lee, K. Kim, J. Hong, and W. Jung, “GPES : Supporting Source Code Analysis by
Extracting the Evolutionary History of Software Structure and Quality,” in Proc. of the 11th Asia
Pacific Int. Conference on Information Science and Technology, pp. 43-45, June 26-29, 2016.
Article (CrossRef Link).

[12] G. Maskeri, S. Sarkar, and K. Heafield, "Mining business topics in source code using latent
dirichlet allocation," in Proc. of the 1st India Software Engineering Conference, pp. 113-120,
February 19-22, 2008. Article (CrossRef Link).

[13] E. Hill, L. Pollock, and K. V. Shanker, “Automatically capturing source code context of
NL-queries for software maintenance and reuse,” in Proc. of the 31st Int. Conference on Software
Engineering, pp. 232-242, May 16-24, 2009. Article (CrossRef Link).

[14] A. Kuhn, S. Ducasseb, and T. Gîrbaa, "Semantic clustering: Identifying topics in source code,"
Information and Software Technology, vol. 49, no. 3, pp. 230-243, March 2007.
Article (CrossRef Link).

https://doi.org/10.1145/336512.336534
http://git-scm.com/
http://subversion.apache.org/
https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1109/icse.2012.6227181
https://doi.org/10.1109/eurmic.2004.1333367
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5427
https://developer.android.com/training/material/lists-%20cards.html
https://developer.android.com/training/material/lists-%20cards.html
https://www.researchgate.net/publication/308901316_GPES_Supporting_Source_Code_Analysis_by_Extracting_the_Evolutionary_History_of_Software_Structure_and_Quality
https://doi.org/10.1145/1342211.1342234
https://doi.org/10.1109/icse.2009.5070524
https://doi.org/10.1016/j.infsof.2006.10.017

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1247

[15] P. W. McBurney, and C. McMillan, "Automatic Source Code Summarization of Context for Java
Methods," IEEE Transactions on Software Engineering, vol. 42, no. 02, pp. 103-119, February,
2016. Article (CrossRef Link).

[16] Y. Lee, K. Kim, and Woosung Jung, “Analyzing Developer’s Share of Code Based on Abstract
Syntax Tree,” in Proc. of the Korean Society of Computer Information Conference, Vol. 23, No. 2,
pp. 23-24, July 9-11, 2015. Article (CrossRef Link).

[17] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim "How do software engineers understand code
changes?: an exploratory study in industry," in Proc. of the 20th Int. Symposium on the
Foundations of Software Engineering, pp. 51:1-51:11 November 11-16, 2012.
Article (CrossRef Link).

[18] H.A. Nguyen, A.T. Nguyen, T.T. Nguyen, T.N. Nguyen, and H. Rajan, "A study of repetitiveness
of code changes in software evolution," in Proc. of the 28th Int. Conference on Automated
Software Engineering, pp. 180-190, November 11-15, 2013. Article (CrossRef Link).

[19] S. Negara, M. Codoban, D. Dig, and R.E. Johnson, "Mining fine-grained code changes to detect
unknown change patterns," in Proc. of the 36th Int. Conference on Software Engineering, pp.
803-813, May 31-June 7, 2014. Article (CrossRef Link).

[20] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,” in Proc. of the 20th
Working Conference on Reverse Engineering, pp. 182–191, October 14-17, 2013.
Article (CrossRef Link).

[21] A. Kalia and S. Sood, “Characterization of Reusable Software Components for Better Reuse,” Int.
Journal of Research in Engineering and Technology, Vol. 03, No. 05, May 2014.
Article (CrossRef Link).

[22] M. Aziz and S. North, “Retrieving software component using clone detection and program slicing,”
Sheffield, UK: The University of Sheffield, February 2007. Article (CrossRef Link).

[23] E. Enslen, E. Hill, and L. Pollock, “Mining Source Code to Automatically Split Identifiers for
Software Analysis,” in Proc. of the 6th Int. Working Conference on Mining Software Repositories,
pp. 71–80, May 16-17, 2009. Article (CrossRef Link).

[24] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A Language and Infra- structure for
Analyzing Ultra-Large-Scale Software Repositories,” in Proc. of the 35th Int. Conference on
Software Engineering, pp. 422-431, May 18-26, 2013. Article (CrossRef Link).

[25] A. Capiluppi, M. Morisio, and J. F. Ramil, “Structural evolution of an open source system: a case
study,” in Proc. of the 12th Int. Workshop on Program Comprehension, pp. 172-182, June 26-26,
2004. Article (CrossRef Link).

[26] T. Zimmermann, A. Zeller, P. Weißgerber, S. Diehl, “Mining version histories to guide software
changes,” IEEE Transactions on Software Engineering, vol. 31, no. 6, pp. 429-445, June, 2005.
Article (CrossRef Link).

[27] J. I. Maletic, M. L. Collard, “Supporting source code difference analysis,” in Proc. of the 20th Int.
Conference on Software Maintenance, pp. 210–219, September 11-14, 2004.
Article (CrossRef Link).

https://doi.org/10.1109/TSE.2015.2465386
https://www.dbpia.co.kr/SearchResult/LeftBrowseSearch?Id=PLCT00006628&SearchHistoryItem=%ED%95%9C%EA%B5%AD%EC%BB%B4%ED%93%A8%ED%84%B0%EC%A0%95%EB%B3%B4%ED%95%99%ED%9A%8C+%ED%95%99%EC%88%A0%EB%B0%9C%ED%91%9C%EB%85%BC%EB%AC%B8%EC%A7%91+&CDepth=2&ContentsType=eJournal&ilvl=2&SearchString=%EC%9D%B4%EC%9A%A9%ED%98%84&SearchField=0
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1109/ase.2013.6693078
https://doi.org/10.1145/2568225.2568317
https://doi.org/10.1109/wcre.2013.6671293
http://esatjournals.net/ijret/2014v03/i05/IJRET20140305107.pdf
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=0CBAEA9B3DFE8CAFFC19D075EB784A81?doi=10.1.1.103.3155
https://doi.org/10.1109/msr.2009.5069482
http://dl.acm.org/citation.cfm?id=2486844
https://doi.org/10.1109/wpc.2004.1311059
https://doi.org/10.1109/TSE.2005.72
https://doi.org/10.1109/icsm.2004.1357805

1248 Jaekwon Lee et al.: Extracting the Source Code Context to Predict Import Changes using GPES

Jaekwon Lee received his B.S.E. and M.Eng. degrees in Computer Engineering from
Chungbuk National University, Korea, in 2013 and 2015, respectively. Currently, he is a
Ph.D Student in the Department of Computer Engineering, Chungbuk National University.
His research interests include mining software repositories, software evolution and
search-based software engineering.

Kisub Kim received his B.S.E. degree in Computer Engineering from Chungbuk
National University, Korea, in 2014. He was a student researcher at Natural Language
Processing Lab in Chungbuk National University from 2012 to 2014. He was a developer
in Kyunghee University Medical Center from 2014 to 2015. He is currently an M.Eng.
student at the Dept. of Computer Engineering, Chungbuk National University. His
research interests include mining software repositories, code search, and software
evolution.

Yong-hyeon Lee received his B.S.E. and M.Eng. degrees in Computer Engineering
from Chungbuk National University, Korea, in 2014 and 2016, respectively. He is
currently a member of Game Platform Development Team at NEOWIZ GAMES Corp.
His research interests include software evolution and source code analysis.

Jang-Eui Hong is a professor of Computer Science Department at the school of
Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea.
He received his Ph.D in computer science from KAIST, Korea, in 2001. He served as a
research member at ADD(Agency for Defense Development) from 2000 to 2002, and
also served as a principal consultant at SolutionLink, Co., Ltd. His research interests
include software quality, embedded software architecture, low-energy software model,
and software process improvement.

Young-Hoon Seo received his B.S., M.S., and Ph.D degrees in Computer Engineering
from Seoul National University, Korea, in 1983, 1985, and 1991, respectively. He was a
visiting scholar at the Center for Machine Translation, Carnegie-Mellon University from
1994 to 1995. He is currently a professor at the Dept. of Computer Engineering,
Chungbuk National University from 1988. His research interests include Natural
Language Processing, Korean Language Analysis, Word Sense Disambiguation,
Information Retrieval, Question-Answering.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 1249

Byung-Do Yang received the B.S., M.S., and Ph.D. degrees in electrical engineering
and computer science from Korea Advanced Institute of Science and Technology
(KAIST), Republic of Korea, in 1999, 2001, and 2005, respectively. He was a senior
engineer at the Memory Division, Samsung Electronics, Kyungki- Do, Republic of
Korea, in 2005, where he was involved in the design of DRAM. In 2006, he joined the
department of electronics engineering, Chungbuk National University, Republic of
Korea, where he is currently a professor. His research interests include circuit and
system designs.

Woosung Jung received his B.S. and Ph.D. degrees in Computer Science and
Engineering from Seoul National University, Korea, in 2003 and 2011, respectively.
He was a researcher in SK UBCare from 1998 to 2002. He was a senior research
engineer at Software Capability Development Center in LG Electronics from 2011 to
2012. He was an associate professor at the Dept. of Computer Engineering, Chungbuk
National University from 2012 to 2016. He is currently an associate professor at the
Graduate School of Education, Seoul National University of Education. His research
interests include software education, software engineering, adaptive software system
and mining software repositories.

