DOI QR코드

DOI QR Code

Trametes villosa Lignin Peroxidase (TvLiP): Genetic and Molecular Characterization

  • 투고 : 2016.06.27
  • 심사 : 2016.09.28
  • 발행 : 2017.01.28

초록

White-rot basidiomycetes are the organisms that decompose lignin most efficiently, and Trametes villosa is a promising species for ligninolytic enzyme production. There are several publications on T. villosa applications for lignin degradation regarding the expression and secretion of laccase and manganese peroxidase (MnP) but no reports on the identification and characterization of lignin peroxidase (LiP), a relevant enzyme for the efficient breakdown of lignin. The object of this study was to identify and partially characterize, for the first time, gDNA, mRNA, and the corresponding lignin peroxidase (TvLiP) protein from T. villosa strain CCMB561 from the Brazilian semiarid region. The presence of ligninolytic enzymes produced by this strain grown in inducer media was qualitatively and quantitatively analyzed by spectrophotometry, qPCR, and dye fading using Remazol Brilliant Blue R. The spectrophotometric analysis showed that LiP activity was higher than that of MnP. The greatest LiP expression as measured by qPCR occurred on the $7^{th}$ day, and the ABSA medium (agar, sugarcane bagasse, and ammonium sulfate) was the best that favored LiP expression. The amplification of the TvLiP gene median region covering approximately 50% of the T. versicolor LPGIV gene (87% identity); the presence of Trp199, Leu115, Asp193, Trp199, and Ala203 in the translated amplicon of the T. villosa mRNA; and the close phylogenetic relationship between TvLiP and T. versicolor LiP all indicate that the target enzyme is a lignin peroxidase. Therefore, T. villosa CCMB561 has great potential for use as a LiP, MnP, and Lac producer for industrial applications.

키워드

참고문헌

  1. Chen M, Zeng G, Tan Z, Jiang M, Li H, Liu L, et al. 2011. Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile. PLoS One 6: 25647. https://doi.org/10.1371/journal.pone.0025647
  2. Kues U. 2015. Fungal enzymes for environmental management. Curr. Opin. Biotechnol. 33: 268-278. https://doi.org/10.1016/j.copbio.2015.03.006
  3. Silva R, Haraguchi SK, Muniz EC, Rubira A. 2009. Aplicacoes de fibras lignocelulósicas na Quimica de polímeros e em compositos. Química Nova 32: 661-671. https://doi.org/10.1590/S0100-40422009000300010
  4. Singh R, Ashish S, Sapna T, Monika S. 2014. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew. Sustain. Energy Rev. 32: 713-728. https://doi.org/10.1016/j.rser.2014.01.051
  5. Lundell TK, Makela MR, Hilden K. 2010. Lignin-modifying enzymes in filamentous basidiomycetes - ecological, functional and phylogenetic review. J. Basic Microbiol. 50: 5-20. https://doi.org/10.1002/jobm.200900338
  6. Duran N. 2010. Enzimas lignolíticas. In Esposito E, de Azevedo JL (eds.). FUNGOS uma Introducao a Biologia, Bioquimica e Biotecnologia. EDUCS, Caxias do Sul.
  7. Polizelli MLTM, Rai M. 2014. Fungal Enzymes. CRC Press, Taylor & Francis Group, London.
  8. Quiroz-Castaneda RE, Perez-Mejía N, Martinez-Anaya C, Acosta-Urdapilleta L, Folch-Mallol J. 2011. Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus. Biodegradation 22: 565-572. https://doi.org/10.1007/s10532-010-9428-y
  9. Wong DWS. 2009. Structure and action mechanism of ligninolytic enzymes. Appl. Microbiol. Biotechnol. 157: 174-209.
  10. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: 233-238. https://doi.org/10.1093/nar/gkn663
  11. Zhao Z, Liu H, Wang C, Xu JR. 2014. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 15: 6. https://doi.org/10.1186/1471-2164-15-6
  12. Ospina-Giraldo MD, Griffith JG, Laird EW, Mingora C. 2010. The CAZyome of Phytophthora spp: a comprehensive analysis of the gene complement coding for carbohydrateactive enzymes in species of the genus Phytophthora. BMC Genomics 11: 525. https://doi.org/10.1186/1471-2164-11-525
  13. Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, et al. 2007. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol. 43: 430-451. https://doi.org/10.1016/j.ympev.2006.08.024
  14. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, et al. 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brownrot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA 111: 9923-9928. https://doi.org/10.1073/pnas.1400592111
  15. Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, et al. 2007. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc. Natl. Acad. Sci. USA 104: 18730-18735. https://doi.org/10.1073/pnas.0706756104
  16. Brown NA, Antoniw J, Hammond-Kosack KE. 2012. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One 7: e33731. https://doi.org/10.1371/journal.pone.0033731
  17. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. 2013. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6: 41. https://doi.org/10.1186/1754-6834-6-41
  18. Seshime Y, Juvvadi PR, Kitamoto K, Ebizuka Y, Fujii I. 2010. Identification of csypyrone B1 as the novel product of Aspergillus oryzae type III polyketide synthase CsyB. Bioorg. Med. Chem. 18: 4542-4546. https://doi.org/10.1016/j.bmc.2010.04.058
  19. Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS. 2006. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can. J. Bot. 84: 1794-1805. https://doi.org/10.1139/b06-128
  20. Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D. 2013. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brownrot Polyporales provides insight into mechanisms of wood decay. Mycologia 105: 1412-1427. https://doi.org/10.3852/13-072
  21. Kirk TK, Farrell RL. 1987. Enzymatic "combustion": the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465-505. https://doi.org/10.1146/annurev.mi.41.100187.002341
  22. Wariishi H, Valli K, Gold MH. 1992. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 267: 23688-23695.
  23. Moredo N, Lorenzo M, Domínguez A, Moldes D, Cameselle C, Sanroman A. 2003. Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J. Microbiol. Biotechnol. 19: 665-669. https://doi.org/10.1023/A:1025198917474
  24. Singh AP, Singh T. 2014. Biotechnological applications of wood-rotting fungi: a review. Biomass Bioenergy 62: 198-206. https://doi.org/10.1016/j.biombioe.2013.12.013
  25. Wang P, Hu X, Cook S, Begonia M, Lee KS, Hwang H-M. 2008. Effect of culture conditions on the production of ligninolytic enzymes of white-rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J. Microbiol. Biotechnol. 24: 2205-2212. https://doi.org/10.1007/s11274-008-9731-5
  26. Dashtban M, Schraft H, Syed TA, Qin, W. 2010. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 1: 36-50.
  27. Ferraz AL. 2010. Fungos decompositores de materiais lignocelulosicos. In Esposito E, de Azevedo JL (eds.). FUNGOS uma Introducao a Biologia, Bioquimica e Biotecnologia. EDUCS, Caxias do Sul.
  28. Hammel K, Cullen D. 2008. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Biotechnol. 11: 349-355.
  29. Ruiz-Duenas F, Morales M, Garcia E, Miki Y, Martinez MJ, Martinez AT. 2009. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J. Exp. Bot. 60: 441-452. https://doi.org/10.1093/jxb/ern261
  30. Morgenstern I, Klopman S, Hibbett DS. 2008. Molecular evaluation and diversity of lignin degrading heme peroxidase in the Agaricomycetes. J. Mol. Evol. 66: 243-257. https://doi.org/10.1007/s00239-008-9079-3
  31. Neves MA, Baseia IG, Drechsler-Santos ER, Goes-Neto A. 2013. Guide to the Common Fungi of the Semiarid Region of Brazil. Tecc Editora Ltda, Florianopolis.
  32. Bukh C, Lund M, Bjerrum MJ. 2006. Kinetic studies on the reaction between Trametes villosa laccase and dioxygen. J. Inorg. Biochem. 100: 1547-1557. https://doi.org/10.1016/j.jinorgbio.2006.05.007
  33. Morozova OV, Shumakovich GP, Shleev SV, Yaropolou YI. 2007. Laccase-mediator system and their applications: a review. Appl. Biochem. Microbiol. 43: 523-535. https://doi.org/10.1134/S0003683807050055
  34. Tadesse MA, D'Annibale A, Galli C, Gentilli P, Sergi F. 2008. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Org. Biomol. Chem. 6: 868-878. https://doi.org/10.1039/b716002j
  35. Silva MLC, Souza VB, Santos VS, Kamida HM, Vasconcellos-Neto JRT, Goes-Neto A, Koblitz MGB. 2014. Production of manganese peroxidase by Trametes villosa on inexpensive substrate and its application in the removal of lignin from agricultural wastes. Adv. Biosci. Biotechnol. 5: 1067-1077. https://doi.org/10.4236/abb.2014.514122
  36. Yamanaka R, Soares CF, Matheus DR, Machado KMG. 2008. Lignolytic enzymes produced by Trametes villosa CCB176 under different culture conditions. Braz. J. Microbiol. 39: 78-84. https://doi.org/10.1590/S1517-83822008000100019
  37. Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, et al. 1996. Purification, characterization, molecular cloning, and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Appl. Environ. Microbiol. 62: 834-841.
  38. Kuwahara M, Glenn JK, Morgan MA, Gold MH. 1984. Separation and characterization of two extracellular H2O2 dependent oxidases from lignolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169: 247-250. https://doi.org/10.1016/0014-5793(84)80327-0
  39. Tien M, Kirk TK. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique $H_2O_2$-requiring oxygenase. Proc. Natl. Acad. Sci. USA 81: 2280-2284. https://doi.org/10.1073/pnas.81.8.2280
  40. Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
  41. Goes-Neto A, Loguercio-Leite C, Guerrero RT. 2005. DNA extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas 18: 19-32.
  42. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  43. Fitch WM, Margoliash E. 1967. Construction of phylogenetic trees. Science 155: 279-284. https://doi.org/10.1126/science.155.3760.279
  44. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ. 2013. Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb. Technol. 52: 1-12. https://doi.org/10.1016/j.enzmictec.2012.10.003
  45. Galhaup C, Goller S, Peterbauer Ck, Strauss J, Haltrich D. 2002. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148: 2159-2169. https://doi.org/10.1099/00221287-148-7-2159
  46. Ferhan M, Santos SN, Melo IS, Yan N, Sain M. 2013. Identification of a potential fungal species by 18S rDNA for ligninases production. World J. Microbiol. Biotechnol. 29: 2437-2440. https://doi.org/10.1007/s11274-013-1398-x
  47. Iqbal HMN, Asgher M, Bhatti HN. 2011. Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. Bioresources 6: 1273-1278.
  48. Guerra G, Dominguez O, Ramos-Leal M, Manzano AM, Sanchez MI, Hernandez I, et al. 2008. Production of laccase and manganese peroxidase by the white-rot fungi from sugarcane bagasse in solid bed use for dyes decolourisation. Sugar Technol. 10: 260-264. https://doi.org/10.1007/s12355-008-0046-5
  49. Galvagno MA, Forchiassin F. 2010. Fisiologia dos fungos: crescimento, morfologia e diferenciacao. In Esposito E, de Azevedo JL (eds.). FUNGOS uma Introducao a Biologia, Bioquimica e Biotecnologia. EDUCS, Caxias do Sul.
  50. Sarnthina R, Khammuang S, Svasti J. 2009. Extracellular ligninolytic enzymes by Lentinus polychrous Lév. under solid-state fermentation of potential agro-industrial wastes and their effectiveness in decolorization of synthetic dyes. Biotechnol. Bioprocess Eng. 14: 513-522. https://doi.org/10.1007/s12257-008-0262-6
  51. Levin L, Melignani E, Ramos AM. 2010. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour. Technol. 101: 4554-4563. https://doi.org/10.1016/j.biortech.2010.01.102
  52. Johasson T, Nyman PO. 1996. A cluster of genes encoding major isozymes of lignin peroxidase, and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170: 31-38. https://doi.org/10.1016/0378-1119(95)00846-2
  53. Cullen D. 1997. Recent advances on the molecular genetics of ligninolytic fungi. J. Biotechnol. 53: 273-289. https://doi.org/10.1016/S0168-1656(97)01684-2
  54. Perez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martinez MJ, et al. 2005. Versatile peroxidase oxidation of high redox potential aromatic compounds: sitedirected mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J. Mol. Biol. 354: 385-402. https://doi.org/10.1016/j.jmb.2005.09.047
  55. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. 2012 The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715-1719. https://doi.org/10.1126/science.1221748
  56. Knezevic A, Ivan M, Mirjana S, Jelena V. 2013. Potential of Trametes species to degrade lignin. Int. Biodeterior. Biodegradation. 85: 52-56. https://doi.org/10.1016/j.ibiod.2013.06.017
  57. Dinis MJ, Bezerra RM, Nunes F, Dias AA, Guedes CV, Ferreira LM, et al. 2009. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour. Technol. 100: 4829-4835. https://doi.org/10.1016/j.biortech.2009.04.036
  58. Elisashvili V, Kachlishvili E, Penninckx M. 2008. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J. Ind. Microbiol. Biotechnol. 35: 1531-1538. https://doi.org/10.1007/s10295-008-0454-2
  59. Koyani RD, Rajput KS. 2015. Solid state fermentation: comprehensive tool for utilization of lignocellulosic through biotechnology. J. Bioprocess Biotech. 5: 2.

피인용 문헌

  1. Draft genome sequence of Trametes villosa (Sw.) Kreisel CCMB561, a tropical white-rot Basidiomycota from the semiarid region of Brazil vol.18, pp.None, 2017, https://doi.org/10.1016/j.dib.2018.04.074
  2. Comparative Genomics Uncovers the Genetic Diversity and Synthetic Biology of Secondary Metabolite Production of Trametes vol.48, pp.2, 2017, https://doi.org/10.1080/12298093.2020.1725361
  3. Lignocellulosic Waste Pretreatment Solely via Biocatalysis as a Partial Simultaneous Lignino-Holocellulolysis Process vol.11, pp.6, 2021, https://doi.org/10.3390/catal11060668
  4. Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping vol.344, pp.no.pb, 2017, https://doi.org/10.1016/j.biortech.2021.126168