References
- Li X, Wu H, Zhang M, Liang S, Xiao J, Wang Q, et al. 2012. Secreted glyceraldehyde-3-phosphate dehydrogenase as a broad spectrum vaccine candidate against microbial infection in aquaculture. Lett. Appl. Microbiol. 54: 1-9. https://doi.org/10.1111/j.1472-765X.2011.03164.x
- Liang S, Wu H, Liu B, Xiao J, Wang Q, Zhang Y. 2012. Immune response of turbot (Scophthalmus maximus L.) to a broad spectrum vaccine candidate, recombinant glyceraldehyde-3-phosphate dehydrogenase of Edwardsiella tarda. Vet. Immunol. Immunopathol. 150: 198-205. https://doi.org/10.1016/j.vetimm.2012.09.036
- Sun Z, Shen B, Wu H, Zhou X, Wang Q, Xiao J, Zhang Y. 2015. The secreted fructose 1,6-bisphosphate aldolase as a broad spectrum vaccine candidate against pathogenic bacteria in aquaculture. Fish Shellfish Immunol. 46: 638-647. https://doi.org/10.1016/j.fsi.2015.08.001
- Blau K, Portnoi M, Shagan M, Kaganovich A, Rom S, Kafka D, et al. 2007. Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae. J. Infect. Dis. 195: 1828-1837. https://doi.org/10.1086/518038
- Egea L, Aguilera L, Gimenez R, Sorolla MA, Aguilar J, Badia J, Baldoma L. 2007. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int. J. Biochem. Cell Biol. 39: 1190-1203. https://doi.org/10.1016/j.biocel.2007.03.008
- Henderson B, Martin A. 2011. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun. 79: 3476-3491. https://doi.org/10.1128/IAI.00179-11
- Tunio SA, Oldfield NJ, Ala'Aldeen DA, Wooldridge KG, Turner DP. 2010. The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiol. 10: 280. https://doi.org/10.1186/1471-2180-10-280
- Tunio SA, Oldfield NJ, Berry A, Ala'Aldeen DA, Wooldridge KG, Turner DP. 2010. The moonlighting protein fructose-1,6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol. Microbiol. 76: 605-615. https://doi.org/10.1111/j.1365-2958.2010.07098.x
- de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, et al. 2005. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab. Invest. 85: 154-159. https://doi.org/10.1038/labinvest.3700208
- Kozera B, Rapacz M. 2013. Reference genes in real-time PCR. J. Appl. Genet. 54: 391-406. https://doi.org/10.1007/s13353-013-0173-x
- Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RTPCR normalisation; strategies and considerations. Genes Immun. 6: 279-284. https://doi.org/10.1038/sj.gene.6364190
- Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: research0034.1-research0034.11.
- Jacob TR, Laia ML, Ferro JA, Ferro MI. 2011. Selection and validation of reference genes for gene expression studies by reverse transcription quantitative PCR in Xanthomonas citri subsp. citri during infection of Citrus sinensis. Biotechnol. Lett. 33: 1177-1184. https://doi.org/10.1007/s10529-011-0552-5
- McMillan M, Pereg L. 2014. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense. PLoS One 9: e98162. https://doi.org/10.1371/journal.pone.0098162
- Takle GW, Toth IK, Brurberg MB. 2007. Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol. 7: 50. https://doi.org/10.1186/1471-2229-7-50
- Theis T, Skurray RA, Brown MH. 2007. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. J. Microbiol. Methods 70: 355-362. https://doi.org/10.1016/j.mimet.2007.05.011
- Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26: 509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
- Andersen CL, Jensen JL, Orntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64: 5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
- Liu X, Wu H, Chang X, Tang Y, Liu Q, Zhang Y. 2014. Notable mucosal immune responses induced in the intestine of zebrafish (Danio rerio) bath-vaccinated with a live attenuated Vibrio anguillarum vaccine. Fish Shellfish Immunol. 40: 99-108 https://doi.org/10.1016/j.fsi.2014.06.030
- Zhang M, Wu H, Li X, Yang M, Chen T, Wang Q, et al. 2012. Edwardsiella tarda flagellar protein FlgD: a protective immunogen against edwardsiellosis. Vaccine 30: 3849-3856. https://doi.org/10.1016/j.vaccine.2012.04.008
- Rao PS, Yamada Y, Tan YP, Leung KY. 2004. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol. Microbiol. 53: 573-586. https://doi.org/10.1111/j.1365-2958.2004.04123.x
-
Chakraborty S, Li M, Chatterjee C, Sivaraman J, Leung KY, Mok YK. 2010. Temperature and
$Mg^{2+}$ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda. J. Biol. Chem. 285: 38876-38888. https://doi.org/10.1074/jbc.M110.179150 - Xiao JF, Wang QY, Liu Q, Wang X, Liu HA, Zhang YX. 2008. Isolation and identification of fish pathogen Edwardsiella tarda from mariculture in China. Aquac. Res. 40: 13-17. https://doi.org/10.1111/j.1365-2109.2008.02101.x
- Cappelli K, Felicetti M, Capomaccio S, Spinsanti G, Silvestrelli M, Supplizi AV. 2008. Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 9: 49. https://doi.org/10.1186/1471-2199-9-49
Cited by
- Precise feeding of probiotics in the treatment of edwardsiellosis by accurate estimation of Edwardsiella tarda vol.68, pp.10, 2017, https://doi.org/10.1007/s13213-018-1371-x
- Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.00892
- rpoB and efp are stable candidate reference genes for quantitative real-time PCR analysis in Saccharopolyspora spinosa vol.35, pp.1, 2017, https://doi.org/10.1080/13102818.2021.1899852
- Reference gene selection for qRT-PCR analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-81524-w