References
- World Health Organisation. 2015. Chronic obstructive pulmonary disease (COPD). Available from http://www.who.int/mediacentre/factsheets/fs315/en/. Accessed 25 August, 2016.
- Rogers DF, Barnes PJ. 2006. Treatment of airway mucus hypersecretion. Ann. Med. 38: 116-125. https://doi.org/10.1080/07853890600585795
- Martin C, Frija-Masson J, Burgel PR. 2014. Targeting mucus hypersecretion: new therapeutic opportunities for COPD? Drugs 74: 1073-1089. https://doi.org/10.1007/s40265-014-0235-3
- Burgel PR, Nadel JA. 2008. Epidermal growth factor receptor-mediated innate immune responses and their roles in airway diseases. Eur. Respir. J. 32: 1068-1081. https://doi.org/10.1183/09031936.00172007
- Casalino-Matsuda SM, Monzon ME, Forteza RM. 2006. Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am. J. Respir. Cell Mol. Biol. 34: 581-591. https://doi.org/10.1165/rcmb.2005-0386OC
- Theodoropoulos G, Carraway KL. 2007. Molecular signaling in the regulation of mucins. J. Cell. Biochem. 102: 1103-1116. https://doi.org/10.1002/jcb.21539
- Hewson CA, Edbrooke MR, Johnston SL. 2004. PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGF-alpha, Ras/Raf, MEK, ERK and Sp1-dependent mechanisms. J. Mol. Biol. 344: 683-695. https://doi.org/10.1016/j.jmb.2004.09.059
- Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I. 2002. Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J. Biol. Chem. 277: 32258-32267. https://doi.org/10.1074/jbc.M204862200
- Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M. 2014. Medicinal plants of the Russian Pharmacopoeia; their history and applications. J. Ethnopharmacol. 154: 481-536. https://doi.org/10.1016/j.jep.2014.04.007
- Sarkhail P. 2014. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: a review. J. Ethnopharmacol. 156: 235-270. https://doi.org/10.1016/j.jep.2014.08.034
- Martinez-Frances V, Rivera D, Heinrich M, Obon C, Rios S. 2015. An ethnopharmacological and historical analysis of "Dictamnus", a European traditional herbal medicine. J. Ethnopharmacol. 175: 390-406. https://doi.org/10.1016/j.jep.2015.09.011
- Garcia-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA. 2009. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58: 537-552. https://doi.org/10.1007/s00011-009-0037-3
- Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F. 2013. Novel insights into the pharmacology of flavonoids. Phytother. Res. 27: 1588-1596. https://doi.org/10.1002/ptr.5023
- Brito AF, Ribeiro M, Abrantes AM, Pires AS, Teixo RJ, Tralhao JG, Botelho MF. 2015. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr. Med. Chem. 22: 3025-3039. https://doi.org/10.2174/0929867322666150812145435
- Wang L, Yang R, Yuan B, Liu Y, Liu C. 2015. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 5: 310-315. https://doi.org/10.1016/j.apsb.2015.05.005
- Oh Y, Lim HW, Huang YH, Kwon HS, Jin CD, Kim K, et al. 2016. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. J. Photochem. Photobiol. B 163: 170-176. https://doi.org/10.1016/j.jphotobiol.2016.08.026
- Desta KT, Kim GS, Kim YH, Lee WS, Lee SJ, Jin JS, et al. 2016. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed. Chromatogr. 30: 225-231. https://doi.org/10.1002/bmc.3539
- Nam KH, Choi JH, Seo YJ, Lee YM, Won YS, Lee MR, et al. 2006. Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Exp. Mol. Med. 38: 445-452. https://doi.org/10.1038/emm.2006.52
- Tuan PA, Park WT, Xu H, Park NI, Park SU. 2012. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J. Agric. Food Chem. 60: 5945-5951. https://doi.org/10.1021/jf300833m
- Berger JT, Voynow JA, Peters KW, Rose MC. 1999. Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am. J. Respir. Cell Mol. Biol. 20: 500-510. https://doi.org/10.1165/ajrcmb.20.3.3383
- Mitin N, Rossman KL, Der CJ. 2005. Signaling interplay in Ras superfamily function. Curr. Biol. 15: R563-R574. https://doi.org/10.1016/j.cub.2005.07.010
- Hsu YL, Kuo PL, Liu CF, Lin CC. 2004. Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett. 212: 53-60. https://doi.org/10.1016/j.canlet.2004.02.019
- Kitazaki T, Soda H, Doi S, Nakano H, Nakamura Y, Kohno S. 2005. Gefitinib inhibits MUC5AC synthesis in mucin-secreting non-small cell lung cancer cells. Lung Cancer 50: 19-24. https://doi.org/10.1016/j.lungcan.2005.05.005
- Fujisawa T, Velichko S, Thai P, Hung LY, Huang F, Wu R. 2009. Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm. J. Immunol. 183: 6236-6243. https://doi.org/10.4049/jimmunol.0900614
- Nam KW, Kim J, Hong JJ, Choi JH, Mar W, Cho MH, et al. 2005. Inhibition of cytokine-induced IkappaB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice. Atherosclerosis 180: 27-35. https://doi.org/10.1016/j.atherosclerosis.2004.11.022
- Feng J, Zhang Y, Xing D. 2012. Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal. 24: 1116-1125. https://doi.org/10.1016/j.cellsig.2012.01.013
- Tan NY, Khachigian LM. 2009. Sp1 phosphorylation and its regulation of gene transcription. Mol. Cell Biol. 29: 2483-2488. https://doi.org/10.1128/MCB.01828-08
- Kang JH, L ee EH, Park SW, Chung IY. 2011. MUC5AC expression through bidirectional communication of Notch and epidermal growth factor receptor pathways. J. Immunol. 187: 222-229. https://doi.org/10.4049/jimmunol.1003606
- Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. 2015. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43: D805-D811. https://doi.org/10.1093/nar/gku1075
- Rossi G, Gasser B, Sartori G, Migaldi M, Costantini M, Mengoli MC, et al. 2012. MUC5AC, cytokeratin 20 and HER2 expression and K-RAS mutations within mucinogenic growth in congenital pulmonary airway malformations. Histopathology 60: 1133-1143. https://doi.org/10.1111/j.1365-2559.2011.04170.x
- Sun C, Hobor S, Bertotti A, Zecchin D, Huang S, Galimi F, et al. 2014. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 7: 86-93. https://doi.org/10.1016/j.celrep.2014.02.045
- Hatzivassiliou G, Liu B, O'Brien C, Spoerke JM, Hoeflich KP, Haverty PM, et al. 2012. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther. 11: 1143-1154. https://doi.org/10.1158/1535-7163.MCT-11-1010
- Giovannetti E, Lemos C, Tekle C, Smid K, Nannizzi S, Rodriguez JA, et al. 2008. Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol. Pharmacol. 73: 1290-1300. https://doi.org/10.1124/mol.107.042382
- Shao MX, Ueki IF, Nadel JA. 2003. Tumor necrosis factor alpha-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. USA 100: 11618-11623. https://doi.org/10.1073/pnas.1534804100
- Spengler ML, Guo LW, Brattain MG. 2008. Phosphorylation mediates Sp1 coupled activities of proteolytic processing, desumoylation and degradation. Cell Cycle 7: 623-630. https://doi.org/10.4161/cc.7.5.5402
- Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE. 1999. An N-terminal region of Sp1 targets its proteasomedependent degradation in vitro. J. Biol. Chem. 274: 15194-15202. https://doi.org/10.1074/jbc.274.21.15194
- Merchant JL, Du M, Todisco A. 1999. Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem. Biophys. Res. Commun. 254: 454-461. https://doi.org/10.1006/bbrc.1998.9964
- Lee JA, Suh DC, Kang JE, Kim MH, Park H, Lee MN, et al. 2005. Transcriptional activity of Sp1 is regulated by molecular interactions between the zinc finger DNA binding domain and the inhibitory domain with corepressors, and this interaction is modulated by MEK. J. Biol. Chem. 280: 28061-28071. https://doi.org/10.1074/jbc.M414134200
Cited by
- Characterization of the human mucin 5AC promoter and its regulation by the histone acetyltransferase P300 vol.43, pp.3, 2017, https://doi.org/10.3892/ijmm.2019.4054
- Guifu Dihuang Pills Ameliorated Mucus Hypersecretion by Suppressing Muc5ac Expression and Inactivating the ERK-SP1 Pathway in Lipopolysaccharide/Cigarette Smoke-Induced Mice vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9539218