DOI QR코드

DOI QR Code

Identification of a Bacillus thuringiensis Surface Layer Protein with Cytotoxic Activity against MDA-MB-231 Breast Cancer Cells

  • Rubio, Viviana P. (Universidad Autonoma de Baja California (UABC), Marine Science Faculty) ;
  • Bravo, Alejandra (Universidad Nacional Autonoma de Mexico (UNAM), Biotechnology Institute) ;
  • Olmos, Jorge (Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Department of Marine Biotechnology)
  • Received : 2016.07.08
  • Accepted : 2016.09.30
  • Published : 2017.01.28

Abstract

In this work, we isolated a surface layer protein (SLP) from a Bacillus thuringiensis (Bt) strain to evaluate it cytotoxic effects against MDA-MB-231 human breast cancer cells. AP11 was selected from a g roup of Bt strains using SLP olig onucleotides developed from Bacillus conserved regions. The AP11 strain was grown in Luria Bertani medium until the late exponential phase; an 86 kDa protein was extracted using 5 M LiCl and identified by liquid chromatography-tandem mass spectrometry. It corresponded to a multispecies SLP highly similar to previously described SLPs in Bt. The MDA-MB-231 breast cancer cells $LC_{50}$ was obtained using $0.25{\mu}g/ml$ of the isolated SLP. HaCat non-cancerous cells presented 90% survival using the same protein concentration. Our data suggest that SLP cytotoxicity against MDA-MB-231 could be induced by an interaction with the CDH11 cell membrane receptor.

Keywords

References

  1. Bravo A, Likitvivatanavong S, Gill S, Soberon M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect. Biochem. Mol. Biol. 41: 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  2. Mendoza G, Portillo A, Arias E, Ribas RM, Olmos SJ. 2012. New combinations of cry genes from Bacillus thuringiensis strains isolated from northwestern Mexico. Int. Microbiol. 15: 209-216.
  3. Bravo A, Gill S, Soberon M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49: 423-435. https://doi.org/10.1016/j.toxicon.2006.11.022
  4. Bravo A, Gomez I, Porta H, Garcia-Gomez B, Rodriguez-Almazan C, Pardo L, Soberon M. 2012. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 6: 17-26.
  5. Güereca L, Bravo A. 1998. The oligomeric state of Bacillus thuringiensis Cry toxins in solution. Biochim. Biophys. Acta 1429: 342-350.
  6. Hussein A, El-Hag A, Safhi M. 2011. Antimalignancy activity of Bacillus thuringiensis serovar Dakota (H15) in vivo. World J. Med. Sci. 6: 6-16.
  7. Palma L, Munoz D, Berry C, Murillo J, Caballero P. 2014. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6: 3296-3325. https://doi.org/10.3390/toxins6123296
  8. Rosas-Garcia N. 2009. Biopesticide production from Bacillus thuringiensis: an enviromentally friendly alternative. Recent Pat. Biotechnol. 3: 28-36. https://doi.org/10.2174/187220809787172632
  9. Soto JO, Banuelos EA, Almanza GM. 2011. Insecticide cry proteins of bacillus thuringiensis with anti-cancer activity. U.S. Patent Application No. 13/994,687.
  10. Allievi MC, Sabbione F, Prado-Acosta M, Palomino MM, Ruzal SM, Sanchez-Rivas C. 2011. Metal biosorption by surface-layer proteins from Bacillus species. J. Microbiol Biotechnol. 21: 147-153. https://doi.org/10.4014/jmb.1009.09046
  11. Beveridge TJ, Pouwels P, Sara M, Kotiranta A, Loutnamma K, Kari K, et al. 1997. Function of S-layers. FEMS Microbiol. Rev. 20: 99-149. https://doi.org/10.1111/j.1574-6976.1997.tb00305.x
  12. Fagan RP, Fairweather NF. 2014. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12: 211-220. https://doi.org/10.1038/nrmicro3213
  13. Guo G, Zhang L, Zhou Z, Ma Q, Liu J, Zhu C, et al. 2008. A new group of parasporal inclusions encoded by the S-layer gene of Bacillus thuringiensis. FEMS Microbiol. Lett. 282: 1-7. https://doi.org/10.1111/j.1574-6968.2008.01087.x
  14. Luckevich M, Beveridge TJ. 1989. Characterization of dynamic S layer on Bacillus thuringiensis. J. Bacteriol. 171: 6656-6667. https://doi.org/10.1128/jb.171.12.6656-6667.1989
  15. Pena G, Miranda-Rios J, De la Riva G, Pardo-Lopez L, Soberon M, Bravo A. 2006. A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera: Coccinellidae). Appl. Environ. Microbiol. 72: 353-360. https://doi.org/10.1128/AEM.72.1.353-360.2006
  16. Sara M, Sleytr UB. 2000. S-Layer proteins. J. Bacteriol. 182: 859-868. https://doi.org/10.1128/JB.182.4.859-868.2000
  17. Sleytr UB, Sara M, Pum D, Schuster B. 2001. Characterization and use of crystalline bacterial cell surface layers. Prog. Surf. Sci. 68: 231-278. https://doi.org/10.1016/S0079-6816(01)00008-9
  18. Sleytr UB, Schuster B, Egelseer EM, Pum D. 2014. S-layers: principles and applications. FEMS Microbiol. Rev. 38: 823-864. https://doi.org/10.1111/1574-6976.12063
  19. Ilk N, Egelseer EM, Sleytr UB. 2011. S-Layer fusion proteins - construction principles and applications. Curr. Opin. Biotechnol. 22: 824-831. https://doi.org/10.1016/j.copbio.2011.05.510
  20. Jaaskelainen S, Palva A. 2005. Lactobacillus surface layers and their applicaction. FEMS Microbiol. Rev. 29: 511-529
  21. Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W. 2013. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl. Microbiol. Biotechnol. 97: 1941-1952. https://doi.org/10.1007/s00253-012-4044-x
  22. Li P, Yin Y, Yu Q, Yang Q. 2011. Lactobacillus acidophilus Slayer protein mediated inhibition of Salmonella-induced apoptosis in Caco-2 cells. Biochem. Biophys. Res. Commun. 409: 142-147. https://doi.org/10.1016/j.bbrc.2011.04.131
  23. Martínez MG, Prado Acosta M, Candurra NA, Ruzal SM. 2012. S-Layers proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem. Biophys. Res. Commun. 422: 590-595. https://doi.org/10.1016/j.bbrc.2012.05.031
  24. Taverniti V, Stuknyte M, Minuzzo M, Ariolu S, De Noni I, Scabiosi C, et al. 2013. S-Layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity. Appl. Environ. Microbiol. 79: 1221-1231. https://doi.org/10.1128/AEM.03056-12
  25. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. 2011. Global cancer statistics. CA Cancer J. Clin. 61: 69-90. https://doi.org/10.3322/caac.20107
  26. Olmos SJ, Gomez R, Rubio VP. 2015. Apoptosis comparison effects between synthetic and natural B-carotene from Dunalliela salina on MDA-MB-231 breast cancer cells. J. Microb. Biochem. Technol. 7: 051-056.
  27. Griko NB, Rose-Young L, Zhang X, Carpenter L, Candas M, Ibrahim M, et al. 2007. Univalent binding of the Cry1Ab toxin of Bacillus thuringiensis to a conserved structural motif in the cadherin receptor BT-R1. Biochemistry 46: 10001-10007. https://doi.org/10.1021/bi700769s
  28. Engelhardt H. 2007. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J. Struct. Biol. 160: 115-124. https://doi.org/10.1016/j.jsb.2007.08.003
  29. Sambrook KT, Frisch EF, Maniatis T. 1989. Molecular Cloning. A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  30. Konstantinov S, Smidt H, de Vos WM, Bruijns S, Singh SK, Valence F, et al. 2008. S-Layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Ssi. USA 105: 19475-19479.
  31. Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  32. Lebeer S, Vanderleyden J, De Keersmaecker SC. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8: 171-184. https://doi.org/10.1038/nrmicro2297
  33. Taverniti V, Guglielmetti S. 2011. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 6: 261-274. https://doi.org/10.1007/s12263-011-0218-x
  34. Soufiane B, Sirois M, Cote JC. 2011. Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis. Antonie Van Leeuwenhoek 100: 349-364. https://doi.org/10.1007/s10482-011-9590-1
  35. Kotiranta A, Haapasalo K, Kari E, Kerosuo I, Olsen T, Sorsa J, et al. 1998. Surface structure, hydrophobicity, phagocytosis and adherence to matrix protein of Bacillus cereus cells with and without the crystalline surface protein layer. Infect. Immunol. 66: 4895-4902.
  36. Mesnage S, Haustant M, Fouet A. 2001. A general strategy for identification of S-layer genes in the Bacillus cereus group: molecular characterization of such a gene in Bacillus thuringiensis subsp. galleria NRRL 4045. Microbiology 147: 1343-1351. https://doi.org/10.1099/00221287-147-5-1343
  37. Lortal S, Vanheijenoort J, Gruber K, Sleytr UB. 1992. S-Layer of Lactobacillus helveticus ATCC 12046: isolation chemical characterization and re-formation after extraction with lithium chloride. J. Gen. Microbiol. 138: 611-618. https://doi.org/10.1099/00221287-138-3-611
  38. Khaleghi M, Kermanshahi RK. 2012. Effect of enviromental stresses on S-layer production in Lactobacillus acidophilus ATCC 4356, pp. 209-224. In Petre M. (ed.). Advances in Applied Biotechnology. InTech, Romania.
  39. Prado Acosta M, Palomino MM, Allievi MC, Sanchez Rivas C, Ruzal SM. 2008. Murein hydrolase activity in the surface layer of Lactobacillus acidophilus ATCC 4356. Appl. Environ. Microbiol. 74: 7824-7827. https://doi.org/10.1128/AEM.01712-08
  40. Zhou Z, Peng D, Zheng J, Guo G, Tian L, Yu Z, Sun M. 2011. Two groups of S-layer proteins, SLP1s and SLP2s, in Bacillus thuringiensis co-exist in the S-layer and in parasporal inclusions. BMB Rep. 44: 323-328. https://doi.org/10.5483/BMBRep.2011.44.5.323
  41. Paniagua-Michel J, Olmos SJ, Morales-Guerrero E. 2015. Drugs and leads from the ocean through biotechnology, pp. 711-729. In Kim S (ed.). Springer Handbook of Marine Biotechnology. Springer, Berlin Heidelberg.
  42. Priya AM, Jayachandran S. 2011. Induction of apoptosis and cell cycle arrest by bis (2-ethylhexyl) phthalate produced by marine Bacillus pumilis MB 40. Chem. Biol. Interact. 195: 133-143.
  43. Adang MJ, Crickmore N, Jurat-Fuentes JL. 2014. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action, pp. 39-87. In Tarlochan S, Dhadialla, Sarjeet SG (eds.). Advances in Insect Physiology. Academic Press, Oxford.
  44. Jung YC, Mizuki E, Akao T, Cote JC. 2006. Isolation and characterization of a novel Bacillus thuringiensis strain expressing a novel crystal protein with cytocidal activity against human cancer cells. J. Appl. Microbiol. 103: 65-79.
  45. Mizuki E, Park YS, Saitoh H, Yamashita S, Akao T, Higuchi K, Ohba M. 2000. Parasporin, a human leukemic cellreconogzing parasporal protein of Bacillus thuringiensis. Clin. Diagn. Lab. Immun. 7: 625-634.
  46. Ohba M, Mizuki E, Uemori A. 2009. Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res. 29: 427-434.
  47. Feltes CM, Kudo A, Blaschuk O, Byers SW. 2002. An alternatively spliced cadherin-11 enhances human breast cancer cell invasion. Cancer Res. 62: 6688-6697.
  48. Sarrio D, Palacios J, Hergueta-Redondo M, Gomez-Lopez G, Cano A, Moreno-Bueno G. 2009. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer 9: 74. https://doi.org/10.1186/1471-2407-9-74
  49. Berx G, Van Roy F. 2009. Involvement of members of the cadherin superfamily in cancer. Perspectives in Biology. Cold Spring Harb Perspect Biol. 1: a003129.

Cited by

  1. Cry1A Proteins are Cytotoxic to HeLa but not to SiHa Cervical Cancer Cells vol.20, pp.12, 2017, https://doi.org/10.2174/1389201020666190802114739
  2. Bacillus thuringiensis: From biopesticides to anticancer agents vol.192, pp.None, 2017, https://doi.org/10.1016/j.biochi.2021.10.003