
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, Jan. 2017 237
Copyright ⓒ2017 KSII

Job-aware Network Scheduling for Hadoop
Cluster

Wen Liu1, Zhigang Wang1, and Yanming Shen1

1 School of Computer Science and Technology, Dalian University of Technology,
Dalian, Liaoning, P. R. China, 116024

 [e-mail: 627952@qq.com; 475920112@qq.com; shen@dlut.edu.cn]
*Corresponding author: Yanming Shen

Received July 4, 2016; revised September 26, 2016; accepted November 22, 2016;

 published January 31, 2017

Abstract

In recent years, data centers have become the core infrastructure to deal with big data
processing. For these big data applications, network transmission has become one of the most
important factors affecting the performance. In order to improve network utilization and
reduce job completion time, in this paper, by real-time monitoring from the application layer,
we propose job-aware priority scheduling. Our approach takes the correlations of flows in the
same job into account, and flows in the same job are assigned the same priority. Therefore, we
expect that flows in the same job finish their transmissions at about the same time, avoiding
lagging flows. To achieve load balancing, two approaches (Flow-based and Spray) using
ECMP (Equal-Cost multi-path routing) are presented. We implemented our scheme using
NS-2 simulator. In our evaluations, we emulate real network environment by setting
background traffic, scheduling delay and link failures. The experimental results show that our
approach can enhance the Hadoop job execution efficiency of the shuffle stage, significantly
reduce the network transmission time of the highest priority job.

Keywords: Cloud computing, job-aware, priority scheduling, Hadoop, load balancing

Part of the results in this paper appeared in the Proceedings of the 2015 International Conference on Cloud
Computing and Big Data (CCBD). This work is supported by the National Natural Science Foundation of China
under Grant No. 61173160, and Scientific Research Program of the Higher Education Institution of Xinjiang under
Grant No. XJEDU2016I049.

https://doi.org/10.3837/tiis.2017.01.012 ISSN : 1976-7277

https://doi.org/10.3837/tiis.2017.01.001

238 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

1. Introduction

With the development of Internet, data has penetrated into every field. In order to deal with
massive data, researchers use cluster of machines to parallelly process massive data. Some
significant research results are introduced, such as MapReduce [1-3], GFS [4], BigTable [5]
etc.

The large scale distributed computing applications will generate large amounts of data
transmission in different processing stages. Monitoring data of the Facebook cluster [6] shows
that the network transmission time has exceeded 50% of the total required time, and network
transmission is becoming the key factor of limiting application performance. In order to
improve network efficiency, researchers focus on flow-based network scheduling strategy.

To schedule flows efficiently, first it is necessary to know the application traffic
demands[7,8]. Some people leverage the network-level parameters from switches and hosts to
obtain that information. For example, Hedera [7], Helios [8] estimate traffic demand based on
flow counters on switches. Mahout [9] uses socket buffer usage at end hosts to predict network
requirement. However, these approaches can get the network-level information only after a
flow starts. Also, due to congestion control and background traffic, flow parameters observed
cannot accurately reflect the actual traffic demand. Furthermore, these approaches can only
obtain individual flow information without priorities and dependency relationship. In parallel
computing, flows are not independent, and are correlated, and information obtained from
network layer cannot reflect the relationship among flows and their priorities.

To address these issues, we propose to obtain flow information from application layer. In
this way, it can not only ensure the information accuracy, but also can be well combined with
the centralized control of the big data application framework. In this paper, we propose the
job-aware scheduling approach, and the corresponding method of obtaining flow information
from application layer for the shuffle stage in Hadoop. To obtain flow information from
Hadoop application layer, we can get flow information in advance, and accurately determine
the flow start-end time, and also obtain the relationship among flows. In scheduling, we
consider the correlations among flows and propose the job-based priority scheduling.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3
presents our flow forecasting method from application layer. Section 4 proposes the network
priority scheduling approach. Experiment results and analysis are shown in Section 5. In
Section 6 we conclude the paper.

2. Related Work
Alizadeh et.al proposed DCTCP based on the TCP protocol [10], which adds identification
field in a packet, and uses the explicit congestion notification (ECN) to quickly notify the
sender of the network congestion. Dogar et.al proposed Smart Priority Class in [11], to
forecast the network resources requirement when sending a flow. Mahout [9] observed the size
of the TCP socket buffer, and determined the size of a TCP flow by setting a threshold. Hedera
[7] collected the flow information by observing the occupied bandwidths at a switch.
Some works propose to obtain flow information from the application layer. Orchestra [6]
makes the running application actively send the network demand to the scheduling controller
by modifying the Hadoop application framework. FlowComb [12] analyzed the map task
nodes from Hadoop JobTracker log, and then obtain flow information between map nodes and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 239

reduce nodes via web API provided by Hadoop. HadoopWatch [13], by monitoring log files,
proposed to obtain flow information before a flow starts. Coflow [14,15] established a logical
application layer of the data plane, obtained the demand of the parallel computing model (e.g.,
[16]), and satisfied this requirement by appropriate scheduling.

To schedule flows, DCTCP [10] determines whether the network is congested from Explicit
Congestion Notification (ECN), and then controls the TCP sending rate. Based on DCTCP,
D2TCP [17] proposed a deadline-aware congestion avoidance algorithm, which combines the
deadline information and the network congestion information to control the TCP transmission
rate. PDQ (Preemptive Distributed Quick) [18] uses distributed scheduling approach to
complete flow transmission faster, and more flows can satisfy the deadline requirements.
These approaches can be applied in small scale networks, and become more complicated in
multi-path scenario.

Based on TCP protocol, MP-TCP (multi-path TCP) [19] proposed a multi-path TCP, which
divides a TCP connection into multiple TCP connections, and then schedules flows by ECMP
protocol (Equal-Cost multi-path routing). In ECMP, the Hash-based path selection may assign
multiple flows to the same path, resulting in severe congestion. To address this issue, Advait
Dixit et al. proposed the RPS [20] (random packet spraying) packet scheduling approach to
achieve a better load-balancing. Hedera uses the Global First Fit algorithm to assign a path
satisfying a flow’s bandwidth requirements from all possible multi-paths. Helios [8] and
FlowComb [12] use the same approach proposed by Hedera to schedule flows. MicroTE [21]
proposed to obtain flow information in real time by OpenFlow [22] protocol, and then doesn’t
allocate flows to heavy loaded links to achieve better load-balancing.

Some researchers consider the flow scheduling problem by considering the flow correlation.
Orchestra [6] used the centralized scheduling approach, similar to BitTorrent protocol, to
broadcast data to their destination. For correlated flows (such as flows of Hadoop shuffle
phase), they are assigned a weight and the network resources are allocated according to the
weight. This will make the correlated flows be completed at the same time as much as possible.
Based on flow characteristics of Bing [10,23,24] and FaceBook [6,25], Barrat [20] considers
the task-based flow scheduling.

3. Application Layer Flow Forecasting

3.1 Overview
Distributed computing systems, such as Hadoop, will generate a lot of files during the
execution of a job. These files include source files, temporary files, result files and log files.
By real-time monitoring the files operation and extracting the key information, we can obtain
the flow information generated by the Hadoop operation. Specifically, the Hadoop job log and
index file will be stored in a temporary file after the map task ends. From these files, we can
obtain information of shuffle phase flows from this map task. If a reduce task needs to read the
data from a certain map task, the network transmission parameters will be recorded in the map
task log file. Flow information can be obtained by monitoring and analyzing the temporary
files and log files of the nodes in the cluster.

Fig. 1 is our architecture of the flow forecasting system. Through monitoring and analyzing
the log files, the architecture can forecast network demand of the job in realtime, and transmit
the forecasting information to a central node. Based on the flow information collected by the
central node, we can do a global scheduling in the network. The flow forecasting system has
two core components, the forecasting agent and the centralized controller. In the cluster, the

240 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

forecasting agent is deployed on each computing node, and the collected information is sent to
the centralized controller.

Fig. 1. The architecture of the forecasting system

The forecasting agent: In this paper, we use the file change notification mechanism of the

Linux kernel, Inotify. When running Hadoop, we monitor the temporary files and log files,
extract flow information and send it to the centralized controller in realtime. Because Inotify
can only monitor the specified directory and cannot monitor its subdirectory, in this paper, we
design an approach to monitor the subdirectory according to the structure of Hadoop working
directory and the log directory.

The centralized controller: The controller’s main function is to collect the forecasting
information from all the forecasting agents, and store the forecasting information. The
collected forecasting information includes the flow source/destination addresses, the flow size,
the start-stop sign of the flow, and the dependencies of flows. By utilizing these information,
we can better schedule flows.

3.2 The storage of flow information
In running Hadoop, the structure of the working directory and the log directory are shown in
Fig. 2 and Fig. 3.

Fig. 2. Hadoop working directory

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 241

Fig. 3. Hadoop log directory

In the directory name, such as “application_XXXX_XXX”, "XXXX_XXX" represents

numbers, where the first part is the job label JobId assigned by the Hadoop central control
procedure. The JobId is globally unique and can be used to distinguish different jobs.
Therefore, it can be used to determine dependencies among the flows from jobs. The second
part of the directory name is the task ID of this job, and task ID is unique within each job. In
the forecasting program, the task ID can be mapped to a flow’s destination address of a reduce
task.

The output file of the Hadoop job in the map phase is temporarily stored on the local disk of
the corresponding node, where the temporary file "file.out.index" stores the sizes information
of flows to be transmitted to each reduce task from this map task. When the file
"file.out.index" is created, we can obtain the information of flows from this map task to other
reduce tasks. In the shuffle phase, reduce task reads the data from the map task node. For
efficiency, each reduce task reads data from at most 5 map nodes at the same time. Therefore,
from the "file.out.index" file, we can only obtain the reduce label, and cannot obtain the
address of the node running a reduce task. From the Hadoop operational logs, we can obtain
the mapping between the reduce task label and its address, and therefore determine the
destination address for a flow. The starting and ending time of a flow between a map node and
a reduce node can also be obtained by analyzing the corresponding log files.

3.3 Forecasting agent
The forecasting agent is deployed on each processing node in the cluster, running forecasting
program, connecting to the central controller, and sending the flow information to the
centralized controller in realtime.

The structure of the working directory is shown in Fig. 2. We need to monitor the event of
the subdirectory creation in the root directory, and also the event of the subdirectory creation
in the created subdirectory. For example, when the directory "attempt_xxxx_xxx" is created,
by analyzing the name of the directory, we can obtain JobId of the job and the task labels.
Then, we need to monitor the creation of the file "file.out.index" in the directory of
"attempt_xxxx_xxx". This file records the size of the data volume transferred between a map
node and a reduce node. When this file is created, according to the file format, we analyze the
file, obtain the corresponding values, and send these information together with JobId and the
node’s address to the controller.

For the log subdirectory, with the same approach, we can monitor the directory of
"container_xxxx_xxx" and the modification events of the "syslog" log. For
"container_xxxx_xxx" directory, we analyze the name of the directory, and get the task label

242 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

and job JobId which this log belongs to. For "syslog" modification event, based on the
keyword, we can obtain the category of this log. If it is a reduce log, the reduce task JobId, the
task label and the node's address need to be sent to the controller. If it is a map log, we will
continue to monitor the modification events of this log, and record the position (lastItem) of
the last analyzed item of the log. When a modification event is detected, we analyze the
content between the last analyzed location and the end of log, and update lastItem. If there are
log events associated with staring a reduce task, we extract the label of the reduce task, and set
the current time as the starting time of the flow between this map node and the reduce node. If
there are log events indicating the finish of transmission of a reduce task, we extract the reduce
label, and set the current time as the stopping time of the flow. If a log event indicates that this
map task has finished all data transmission, we will stop the monitoring for this map log.
Everytime detecting a new flow, we will transmit the information of the map task JobId, the
map task label, map node’s address, the start and stop time of the flow, and the reduce task
label to the collection node.

In summary, forecasting agents are able to acquire a flow’s source address, destination
address, the flow size, the flow start and end sign and the job that the flow belongs to. The
forecasting information of these network flows is divided into three types of information, as
shown in Table. 1.

Table 1. The type of information for traffic forecasting
type source explanation

1 file.out.index Source address, size, and reduce task label of a flow

2 reduce log Reduce task label and the destination address of the reduce node

3 map log Start and stop time of a flow between a map node and a reduce node

3.4 Network forecasting information collection
The centralized controller is in charge of collecting forecasting information from all
forecasting agents, organizing and storing these information according to the source address
and destination address of flows.

In our approach, the forecasting agent can only obtain type 1 information in Table 1, i.e., the
source address, size and the reduce task label of a flow. The destination address can be
obtained by analyzing the reduce logs, which record the mappings between reduce task label
and the reduce node’s address.

The information collected about a flow also includes which job this flow belongs to.
Usually, flows in the same job are correlated. Therefore, we can perform job-aware flow
scheduling, where flows in the same job are scheduled together. In this way, we can avoid
lagging tasks and reduce the job completion time.

4. Job-based Priority Scheduling

4.1 Overview
In the Hadoop cluster, each reduce task needs to obtain the intermediate results from the map
task, which is called the shuffle phase. Because the map and reduce tasks may be assigned to
different nodes, intermediate results at map nodes need to be transferred to the reduce node
through the network, which will produce a large number of flows. Also, a reduce task can
proceed to the next step only after obtaining data from all map tasks. When all reduces are

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 243

done, the final job results are obtained. If we don’t schedule these flows carefully, it is possible
that some flows may lag behind and extend the overall job completion time.

Priority scheduling is to assign a priority to each flow. For a high priority flow, it should be
allocated more network resources, so that the high priority network flow can be completed
earlier. As shown in Fig. 4, on the same link, there are two flows A and B, sending the same
amount of data. If fair scheduling is used to allocate the network resources, A and B will
complete the transmission at the same time, which is 8, as shown in Fig. 4 1).

Fig. 4. The example for priority scheduling

If the priority scheduling is used, all network resources are allocated to A first. When flow A

is completed, flow B occupies all network resources, as shown in Fig. 4 2). At this time, the
completion time of flow A is 4, the completion time of flow B is 8. The average completion
time reduces to 6. It can be seen that the priority scheduling approach can reduce the average
flow completion time. If flow A has deadline requirements, fair scheduling may not be able to
satisfy the requirement.

In this paper, we define the priorities of jobs based on their time of arrivals. This means that
an earlier arrived job has a higher priority. Flows in the same job have the same priority. After
assigning a priority for a flow, it is important to appropriately allocate network resources to
flows with different priorities. Next, we introduce how we do the path selection for a flow and
queue management at a switching node.

4.2 Fat-Tree topology and path management
Fat-Tree [26,27] topology is a symmetrical multiple stage interconnection with equal division
bandwidth, good scalability, and abundant equal-cost paths between two nodes. In order to
make full use of the symmetry and multi-path characteristics of Fat-Tree topology, and
achieve better load-balancing, we propose two approaches to use the multi-paths between two
nodes. One approach is packet-based multi-path load balancing, named Spray; the other one is
the flow-based load-balancing, named Flow-based.

4.2.1 Spray
Spray means packet-based load balancing, where packets in a flow are evenly distributed
among all equal cost paths. In this way, each path will receive roughly the same traffic,
reducing retransmissions from out-of-sequence packets.

Since Fat-Tree topology is symmetric, in order to ensure uniform distribution of the packets
to every path, we adopt destination address based round-robin scheduling approach, where
packets having the same destination address are assigned to different equal-cost links. As
shown in Fig. 5, to transmit data between node S1 and S2, the packets will be scheduled in the
round-robin manner according to their destination addresses. In this example, packets
transferred between these two nodes are uniformly assigned to all four equal-cost paths. In

244 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

order to achieve per-destination round-robin scheduling, we set up a counter at the switching
node of the edge layer and agg layer.

.
Fig. 5. per-destination round-robin packet Spray

However, if we do per-packet round-robin, it may result in different loadings on links. For

example, in Fig. 5, if node S1 transfers data to node S2 and S3 at the same time, it is possible
that packets to node S2 and S3 may arrive interleaved at switching node E1, and flows to S2 or
S3 can only utilize two paths among all four paths.

4.2.2 Flow-based path management approach
Different from the Spray approach, the Flow-based approach assigns each flow to the
equal-cost links, and tried to make sure that the utilization on each link is roughly the same.
Note that the centralized controller has the information of all flows in shuffle phase, and this
provides the possibility of a centralized scheduling. With centralized scheduling, we can
choose a suitable path for a flow based on the current flows in the network and link utilization,
and therefore avoid assigning big flows to the same link.

Because the path allocation and the flows are dynamic, when a new flow is added, the
previous optimal allocation may not be optimal for the current time. If we do dynamic optimal
allocation, it will lead to frequent path changes for a flow. This will result in out-of-sequence
problem and reduce the throughput. Therefore, in this paper, we don’t change the path of a
flow once it is allocated.

According to the characteristics of Fat-Tree topology, there are equal-cost multi-paths in the
upward path of the switching node in the edge layer and the agg layer. To achieve a better
load-balancing, we record the usage of the upward link in each switching node at the edge
layer and the agg layer, i.e., the number of flows assigned to each link. When the forecast
program detects a new flow, it first obtains the on-path switching node edgeSw at the edge
layer. Then it determines whether the packets need to be sent to the agg layer. If required, it
selects the least loaded link from all equal-cost upward links, distributed flow to this link and
obtains the switching node aggSw at the agg layer. The same operation is performed at the
aggSw node. Fig. 6 shows the flow chart of flow-based path allocation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 245

Fig. 6. The flow chart of Flow-based path allocation

4.3 Queue management
With our proposed priority scheduling, when selecting a packet to send, high priority packet
will be selected first. Also, when the queue is full, to accept new high priority packets, we need
to drop low priority packets. In this way, we can quickly finish the transmission of high
priority packets.

To avoid head of line blocking by low priority packets, we divide a physical queue into
multiple logical queues, with each logical queue corresponding to a different priority. An
arriving packet will be put at the tail of its corresponding queue. When sending a packet,
among all non-empty queues, packet in the highest priority queue will be selected. When the
buffer is full, packets in the lowest priority queue will be dropped.

4.4 Fault tolerance
In Fat-Tree, the link failure between the processing node and the edge switch can only be
recovered by replacing the corresponding equipment. Therefore, we only discuss the link
failure between the agg layer and the core layer, and between the edge layer and the agg layer.
When a link fails, flows on this link need to be re-routed. Also, we should avoid assigning new
flows to this link. Next, we discuss agg-core link failures and edge-agg link failures
respectively.

4.4.1 The agg-core link failure
When the link <lSrc-lDst> (lSrc means the node in the agg layer, and lDst in the core layer)

between the agg layer and the core layer fails, the lSrc node knows the pod tag of the failed
link, denoted as pod (lSrc). In the lSrc-lDst direction, the affected flows are those assigned on
link <lSrc-lDst> by the lSrc node. Because there are multi-paths on the upward link, we can
reassign existing flows on the failed link to other upward links. Also, new flows needs to avoid
being allocated to the link <lSrc-lDst>. In the lDst-lSrc direction, the flows on the failed link
are transmitted from other pods to the processing node within the pod (lSrc). Since the
downward link is unique, the lDst node cannot reallocate flows to other paths. However,

246 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

according to the Fat-Tree topology, there is a core switch between any two nodes in the agg
layer, and the flows can be rerouted by other core switches.

Fig. 7. The agg-core link failure

Fig. 8. The edge-agg link failure

As shown in Fig. 7, when the link between the agg layer (node 100) and the core layer (node

000) fails, the affected links are thick solid lines, the affected processing nodes and switching
nodes are shaded.

4.4.2 The edge-agg link failure
As shown in Fig. 8, when the link between the edge layer and the agg layer is disconnected,

the affected links are marked with thick solid lines, the affected processing nodes and
switching nodes are shaded. Similarly, when the link <lSrc-lDst> (lSrc means the node in the
edge layer, and lDst in the agg layer) fails, at the lSrc node, all upward flows assigned to the
failed link need to be reallocated, and new flows on the lSrc node need to avoid being allocated
to the link <lSrc-lDst>. In the lDst-lSrc direction, since the downward link is unique, the lDst
node cannot reallocate flows. The flows need to be rerouted by source nodes in other pods.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 247

5. Experiment

5.1 Experimental setup
In our experiments, we simulate flows in Hadoop shuffle phase using NS-2. With the same
simulation setting, we compare our job-aware priority scheduling with the non-priority
scheduling. In the network topology, each link bandwidth is set to 100Mb/s, the buffer
capacity at a port is set to 100 packets, and the flow size is 20MB. In each experiment, we vary
the number of jobs, the number of map tasks and reduce tasks, and the way of spreading
packets, the results are averaged over 10 runs. In the experiment, the number of jobs is varied
from 2 to 8. In the case of priority scheduling, each job is assigned a different priority. For a
job, we change the number of map tasks and reduce tasks within this job, and they are set as: 6
map tasks - 2 reduce tasks, 8 map tasks - 3 reduce tasks, and 10 map tasks - 4 reduce tasks. For
each setting, the nodes running map tasks and reduce tasks are the same. Therefore, flows
generated in each setting are the same. To emulate the real network scenario, in our
experiments, we also consider background traffic, the delay of transmitting flow information
to a switch and link failures.

5.2 Experimental results and analysis

5.2.1 Experimental results
In the Fat-tree network topology, there are multiple shortest paths between two nodes. To
schedule flows over multiple paths, we use the Spray and Flow-based approaches presented in
Section 4.2. Fig. 9 and Fig. 10 show the average job completion time with Spray and
Flow-based respectively. We can see with each different simulation setting, compared with
the non-priority scheduling, our job-aware priority scheduling can reduce the average job
completion time.

Fig. 9. Average completion time (Spray-based) Fig. 10. Average completion time (Flow-based)

Our proposed job-aware priority scheduling gives a higher priority for higher priority jobs,
and therefore, the completion time for higher priority jobs will be reduced. Fig. 11 and Fig. 12
verify this conclusion. From the figures, we see that our job-aware priority scheduling can
reduce the highest priority job completion time. When there are more jobs (means the network
is more congested), with job-aware priority scheduling, the highest priority flows can obtain
more network resources to finish their transmission, and therefore we can achieve a higher
reduction ratio.

248 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

Fig. 11. Completion time reduction ratio for
the highest priority job (Spray-based)

Fig. 12. Completion time reduction ratio for
the highest priority job (Flow-based)

5.2.2 Experiment results under background traffic
For background traffic, we use the Poisson distribution, Normal distribution, and

Exponential distribution to simulate the background traffic in the real network. Under different
background traffic distributions, the results have the same trend. Fig. 13 shows the result of
using the Poisson distribution for background traffic and Flow-based scheduling to spread
packets. The figure shows that job-aware priority scheduling can reduce the average job
completion time for background traffic scenario.

Fig. 13. Average completion time (Poisson) Fig. 14. Average completion time (unknown flow)

5.2.3 Experiment results with delay
For our job-aware priority scheduling, the flow information is collected at executing nodes

and then transmitted to a centralized controller. There is a non-negligible delay in this process.
Therefore, in this section, we evaluate the performance with this delay. We model the delay
with a uniform distribution in [10ms, 500ms]. Under the delay scenario, it is possible that a
flow’s priority is unknown when we schedule it, and we need to assign a priority to this
unknown flow. In our simulation, we investigate three approaches for assigning the priority,
that is, the highest priority, the lowest priority, and the middle priority.

Fig. 14 shows the result where with Flow-based packet spreading, unknown priority flows
are assigned the highest priority and the middle priority. We can see that our job-aware priority
scheduling can still reduce the average job completion time, and especially reduce the
completion time of the highest priority job. But if the unknown packets are assigned the lowest
priority, although it can reduce the completion time of the highest priority job, the average
overall completion time may increase. As shown in Fig. 15, with Flow-based path
management, when the number of flows is small, the average job completion time is slightly

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 249

higher than non-priority scheduling. With the Spray path management, as shown in Fig. 16,
only under the case of 10 map tasks and 4 reduce tasks, our job-aware priority scheduling can
reduce the average completion time. The reason is that if we assign the lowest priority to the
unknown packets, this will lead to packet retransmissions and increase the job completion time.
Therefore, if there is delay of obtaining the flow priority information, we should assign the
unknown flows a higher priority.

Fig. 15. The average job completion time when
assigning the lowest priority to unknown flows
(Flow-based)

Fig. 16. The average job completion time when
assigning the lowest priority to unknown flows
(Spray-based)

5.2.4 Experiment results under link failure
In this section, we evaluate the performance under link failures. In the experiment, after 10
seconds, we fail a link, and the link is off throughout the experiment.

Fig. 17. Average job completion time for
edge-agg link failure (Spray-based)

Fig. 18. Average job completion time
for edge-agg link failure (Flow-based)

Note that for link failures, there are two different kinds of links, agg-core links, and

edge-agg links. Experimental results show the same trend for these two kinds of link failures,
and therefore, we only show the results for edge-agg link failure. Fig. 17 and Fig. 18 show the
case of edge-agg link failure. From the figure, we can see that dynamic fault-tolerance
approach can correctly reassign flows on the failed link, and our job-aware priority scheduling
can reduce the average job completion time. But for Spray path management, if the number of
flows is few, the performance gain is not significant. This is because for Spray path
management, it requires a similar cost for multi-paths, to avoid out-of-sequence problem.
Therefore, when a link fails, the Fat-Tree topology is no longer symmetric, leading to different
bandwidths and delays for these originally equal-cost multi-paths. This will result in packet
retransmission, weakening the gain of the job-aware priority scheduling.

250 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

6. Conclusions

In this paper, we study the flow scheduling problem in the shuffle stage of a Hadoop job. First,
based on the monitoring and analysis of Hadoop temporary files and log files, we obtain the
flow information and their dependence in the shuffle phase. Then we send these information to
a centralized controller to obtain a global view of flows in the shuffle phase. Based on these
collected information, we propose the job based priority scheduling, where flows belonging to
the same job have the same priority. Under the Fat-Tree topology, we present two approaches,
Flow-based and Spray, which make use of the equal-cost multi-path, to achieve the network
load balancing. In the experimental settings, background traffic, scheduling delay and link
failure are introduced to simulate the real environment. The results show that the job-aware
priority scheduling approach can reduce the average job completion time in shuffle phase, and
can significantly reduce the highest priority job completion time.

References
[1] Dean J, Ghemawat S, “MapReduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107-113, January, 2008. Article (CrossRef Link)
[2] Morton K, Balazinska M, Grossman D, “ParaTimer: a progress indicator for MapReduce DAGs,”

in Proc. of 29th ACM SIGMOD International Conference on Management of data, pp.507-518,
June 6-11, 2010. Article (CrossRef Link)

[3] Ferreira Cordeiro R L, Traina Junior C, Machado Traina A J, et al, “Clustering very large
multi-dimensional datasets with mapreduce,” in Proc of 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.690-698, August 21-24, 2011.
Article (CrossRef Link)

[4] Ghemawat, S., H. Gobioff, and S. Leung, ”File and storage systems: The Google File System,” in
Proc. of 19th ACM Symposium on Operating Systems Principles Bolton Landing, pp.29-43,
October 19-22, 2003. Article (CrossRef Link)

[5] Chang F, Dean J, Ghemawat S, et al, “Bigtable: a distributed storage system for structured data,”
Acm Transactions on Computer Systems, vol. 26, no. 2, pp. 205-218, June, 2008.
Article (CrossRef Link)

[6] Chowdhury M, Zaharia M, Ma J, et al, “Managing data transfers in computer clusters with
orchestra,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 98-109,
August, 2011. Article (CrossRef Link)

[7] Al-Fares, Mohammad, et al, “Hedera: dynamic flow scheduling for data center networks,” in Proc.
of 7th USENIX Symposium on Networked Systems Design and Implementation, pp. 281-296, April
28-30, 2010. Article (CrossRef Link)

[8] Farrington N, Porter G, Radhakrishnan S, et al, “Helios: a hybrid electrical/optical switch
architecture for modular data centers,” ACM SIGCOMM Computer Communication Review, vol.
41, no. 4, pp. 339-350, August, 2011. Article (CrossRef Link)

[9] Curtis A R, Kim W, Yalagandula P, “Mahout: Low-overhead datacenter traffic management using
end-host-based elephant detection,” in Proc. of 30th IEEE International Conference on Computer
Communications, pp.1629-1637, April 11-15, 2011. Article (CrossRef Link)

[10] Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., & Prabhakar, B., et al, “Data
center tcp (DCTCP),” ACM Sigcomm Computer Communication Review, vol. 40, no. 4, pp. 63-74,
August, 2011. Article (CrossRef Link)

[11] Dogar F R, Karagiannis T, Ballani H, et al, “Decentralized task-aware scheduling for data center
networks,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 431-442,
August, 2014. Article (CrossRef Link)

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/2018436.2018448
https://www.usenix.org/conference/nsdi10-0
https://www.usenix.org/legacy/events/nsdi10/tech/full_papers/al-fares.pdf
http://dx.doi.org/10.1145/1851182.1851223
http://dx.doi.org/10.1109/INFCOM.2011.5934956
http://dx.doi.org/10.1145/1851182.1851192
http://dx.doi.org/10.1145/1851182.1851192

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 251

[12] Das, A., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., & Yu, C, “Transparent and flexible
network management for big data processing in the cloud,” in Proc. of 5th USENIX Workshop on
Hot Topics in Cloud Computing, HotCloud'13, pp. 37-52, June 25-26, 2013.
Article (CrossRef Link)

[13] Peng Y, Chen K, Wang G, et al, “Hadoopwatch: A first step towards comprehensive traffic
forecasting in cloud computing,” in Proc. of 33th IEEE International Conference on Computer
Communications, pp. 19-27, April 27-May 2, 2014. Article (CrossRef Link)

[14] Chowdhury M, Stoica I, Chowdhury M, et al, “Coflow: An Application Layer Abstraction for
Cluster Networking,” ACM Hotnets, pp. 1-6, August 7, 2012. Article (CrossRef Link)

[15] Chowdhury M, Stoica I, “ Coflow: A networking abstraction for cluster applications,” in Proc. of
11th ACM Workshop on Hot Topics in Networks, pp. 31-36, October 29-30, 2012.
Article (CrossRef Link)

[16] Isard M, Budiu M, Yu Y, et al, “Dryad: distributed data-parallel programs from sequential building
blocks,” ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59-72, March, 2007.
Article (CrossRef Link)

[17] Vamanan B, Hasan J, Vijaykumar T N, “Deadline-aware datacenter tcp (D2TCP),” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 115-126, August, 2012.
 Article (CrossRef Link)

[18] Hong C Y, Caesar M, Godfrey P, “Finishing flows quickly with preemptive scheduling,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 127-138, August, 2012.
Article (CrossRef Link)

[19] Ford A, Raiciu C, Handley M, et al, “TCP Extensions for Multi-path Operation with Multiple
Addresses: draft-ietf-mptcp-multiaddressed-03,” Roke Manor, March 2011.
Article (CrossRef Link)

[20] Dixit A, Prakash P, Hu Y C, et al, “On the impact of packet spraying in data center networks,” in
Proc. of 32nd IEEE International Conference on Computer Communications, pp. 2130-2138,
April 14-19, 2013. Article (CrossRef Link)

[21] Benson T, Anand A, Akella A, et al, “MicroTE: Fine grained traffic engineering for data centers,”
in Proc. of 17th International Conference on Emerging Networking Experiments and Technologies,
pp. 1-12, December 6-9, 2011. Article (CrossRef Link)

[22] McKeown N, Anderson T, Balakrishnan H, et al, “OpenFlow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, April,
2012. Article (CrossRef Link)

[23] Jalaparti V, Bodik P, Kandula S, et al, “Speeding up distributed request-response workflows,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 219-230, August, 2013.
Article (CrossRef Link)

[24] Ananthanarayanan G, Kandula S, Greenberg A G, et al, “Reining in the Outliers in Map-Reduce
Clusters using Mantri,” in Proc. of 9th USENIX Symposium on Operating Systems Design and
Implementation , pp. 24-31, October 4-6, 2010. Article (CrossRef Link)

[25] Nishtala R, Fugal H, Grimm S, et al, “Scaling memcache at facebook,” in Proc. of 10th USENIX
Symposium on Networked Systems Design and Implementation, pp. 385-398, April 2-5, 2013.
Article (CrossRef Link)

[26] Al-Fares M, Loukissas A, Vahdat A, “A scalable, commodity data center network architecture,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp. 63-74, August, 2008.
Article (CrossRef Link)

[27] Niranjan Mysore R, Pamboris A, Farrington N, et al, “Portland: a scalable fault-tolerant layer 2
data center network fabric,” ACM SIGCOMM Computer Communication Review, vol. 39, no. 4,
pp. 39-50, August, 2009. Article (CrossRef Link)

https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/das
http://dx.doi.org/10.1109/INFOCOM.2014.6847920
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-184.pdf
http://dx.doi.org/10.1145/2390231.2390237
http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1145/2342356.2342388
http://dx.doi.org/10.1145/2342356.2342389
http://inl.info.ucl.ac.be/system/files/draft-ietf-mptcp-multiaddressed-03.pdf
http://dx.doi.org/10.1109/INFCOM.2013.6567015
http://dx.doi.org/10.1145/2079296.2079304
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2486001.2486028
http://www.usenix.org/events/osdi10/tech/full_papers/Ananthanarayanan.pdf
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
http://dx.doi.org/10.1145/1402958.1402967
http://dx.doi.org/10.1145/1592568.1592575

252 Liu et al.: Job-aware Network Scheduling for Hadoop Cluster

Wen Liu received his B.S. degree in Computer Science from Xinjiang Normal
University, Urumqi, in 2004, and his M.S. degree in Computer Science from Dalian
University of Technology, Dalian, in 2009. He is currently a Ph.D. student of Computer
Science at Dalian University of Technology. His research interests include database,
stream data processing, and cloud computing.

Zhigang Wang received both his B.S. and M.S. degrees from School of Computer
Science and Technology, Dalian University of Technology, in 2013 and 2016
respectively. His research interests include cloud computing and parallel data processing.

Yanming Shen received his B.S. degree in Automation from Tsinghua University,
Beijing, in 2000, and his Ph.D. degree in Electrical Engineering from the NYU
Polytechnic School of Engineering, Brooklyn, in 2007. He is a professor with the School
of Computer Science and Technology, Dalian University of Technology, Dalian. His
general research interests include packet switch design, data center networks, cloud
computing, and distributed systems. He is a recipient of the 2011 Best Paper Awards for
Multimedia Communications (awardedby IEEE Communications Society).

