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Abstract 
 

In recent years, data centers have become the core infrastructure to deal with big data 
processing. For these big data applications, network transmission has become one of the most 
important factors affecting the performance. In order to improve network utilization and 
reduce job completion time, in this paper, by real-time monitoring from the application layer, 
we propose job-aware priority scheduling. Our approach takes the correlations of flows in the 
same job into account, and flows in the same job are assigned the same priority. Therefore, we 
expect that flows in the same job finish their transmissions at about the same time, avoiding 
lagging flows. To achieve load balancing, two approaches (Flow-based and Spray) using 
ECMP (Equal-Cost multi-path routing) are presented. We implemented our scheme using 
NS-2 simulator. In our evaluations, we emulate real network environment by setting 
background traffic, scheduling delay and link failures. The experimental results show that our 
approach can enhance the Hadoop job execution efficiency of the shuffle stage, significantly 
reduce the network transmission time of the highest priority job. 
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1. Introduction 

With the development of Internet, data has penetrated into every field. In order to deal with 
massive data, researchers use cluster of machines to parallelly process massive data. Some 
significant research results are introduced, such as MapReduce [1-3], GFS [4], BigTable [5] 
etc. 

The large scale distributed computing applications will generate large amounts of data 
transmission in different processing stages. Monitoring data of the Facebook cluster [6] shows 
that the network transmission time has exceeded 50% of the total required time, and network 
transmission is becoming the key factor of limiting application performance. In order to 
improve network efficiency, researchers focus on flow-based network scheduling strategy. 

To schedule flows efficiently, first it is necessary to know the application traffic 
demands[7,8]. Some people leverage the network-level parameters from switches and hosts to 
obtain that information. For example, Hedera [7], Helios [8] estimate traffic demand based on 
flow counters on switches. Mahout [9] uses socket buffer usage at end hosts to predict network 
requirement. However, these approaches can get the network-level information only after a 
flow starts. Also, due to congestion control and background traffic, flow parameters observed 
cannot accurately reflect the actual traffic demand. Furthermore, these approaches can only 
obtain individual flow information without priorities and dependency relationship. In parallel 
computing, flows are not independent, and are correlated, and information obtained from 
network layer cannot reflect the relationship among flows and their priorities.  

To address these issues, we propose to obtain flow information from application layer. In 
this way, it can not only ensure the information accuracy, but also can be well combined with 
the centralized control of the big data application framework. In this paper, we propose the 
job-aware scheduling approach, and the corresponding method of obtaining flow information 
from application layer for the shuffle stage in Hadoop. To obtain flow information from 
Hadoop application layer, we can get flow information in advance, and accurately determine 
the flow start-end time, and also obtain the relationship among flows. In scheduling, we 
consider the correlations among flows and propose the job-based priority scheduling. 

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3 
presents our flow forecasting method from application layer. Section 4 proposes the network 
priority scheduling approach. Experiment results and analysis are shown in Section 5. In 
Section 6 we conclude the paper. 

2. Related Work 
Alizadeh et.al proposed DCTCP based on the TCP protocol [10], which adds identification 
field in a packet, and uses the explicit congestion notification (ECN) to quickly notify the 
sender of the network congestion. Dogar et.al proposed Smart Priority Class in [11], to 
forecast the network resources requirement when sending a flow. Mahout [9] observed the size 
of the TCP socket buffer, and determined the size of a TCP flow by setting a threshold. Hedera 
[7] collected the flow information by observing the occupied bandwidths at a switch.  
Some works propose to obtain flow information from the application layer. Orchestra [6] 
makes the running application actively send the network demand to the scheduling controller 
by modifying the Hadoop application framework. FlowComb [12] analyzed the map task 
nodes from Hadoop JobTracker log, and then obtain flow information between map nodes and 
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reduce nodes via web API provided by Hadoop. HadoopWatch [13], by monitoring log files, 
proposed to obtain flow information before a flow starts. Coflow [14,15] established a logical 
application layer of the data plane, obtained the demand of the parallel computing model (e.g., 
[16]), and satisfied this requirement by appropriate scheduling. 

To schedule flows, DCTCP [10] determines whether the network is congested from Explicit 
Congestion Notification (ECN), and then controls the TCP sending rate. Based on DCTCP, 
D2TCP [17] proposed a deadline-aware congestion avoidance algorithm, which combines the 
deadline information and the network congestion information to control the TCP transmission 
rate. PDQ (Preemptive Distributed Quick) [18] uses distributed scheduling approach to 
complete flow transmission faster, and more flows can satisfy the deadline requirements. 
These approaches can be applied in small scale networks, and become more complicated in 
multi-path scenario. 

Based on TCP protocol, MP-TCP (multi-path TCP) [19] proposed a multi-path TCP, which 
divides a TCP connection into multiple TCP connections, and then schedules  flows by ECMP 
protocol (Equal-Cost multi-path routing). In ECMP, the Hash-based path selection may assign 
multiple flows to the same path, resulting in severe congestion. To address this issue, Advait 
Dixit et al. proposed the RPS [20] (random packet spraying) packet scheduling approach to 
achieve a better load-balancing. Hedera uses the Global First Fit algorithm to assign a path 
satisfying a flow’s bandwidth requirements from all possible multi-paths. Helios [8] and 
FlowComb [12] use the same approach proposed by Hedera to schedule flows. MicroTE [21] 
proposed to obtain flow information in real time by OpenFlow [22] protocol, and then doesn’t 
allocate flows to heavy loaded links to achieve better load-balancing. 

Some researchers consider the flow scheduling problem by considering the flow correlation. 
Orchestra [6] used the centralized scheduling approach, similar to BitTorrent protocol, to 
broadcast data to their destination. For correlated flows (such as flows of Hadoop shuffle 
phase), they are assigned a weight and the network resources are allocated according to the 
weight. This will make the correlated flows be completed at the same time as much as possible. 
Based on flow characteristics of Bing [10,23,24] and FaceBook [6,25], Barrat [20] considers 
the task-based flow scheduling. 

3. Application Layer Flow Forecasting  

3.1 Overview 
Distributed computing systems, such as Hadoop, will generate a lot of files during the 
execution of a job. These files include source files, temporary files, result files and log files. 
By real-time monitoring the files operation and extracting the key information, we can obtain 
the flow information generated by the Hadoop operation. Specifically, the Hadoop job log and 
index file will be stored in a temporary file after the map task ends. From these files, we can 
obtain information of shuffle phase flows from this map task. If a reduce task needs to read the 
data from a certain map task, the network transmission parameters will be recorded in the map 
task log file. Flow information can be obtained by monitoring and analyzing the temporary 
files and log files of the nodes in the cluster. 

Fig. 1 is our architecture of the flow forecasting system. Through monitoring and analyzing 
the log files, the architecture can forecast network demand of the job in realtime, and transmit 
the forecasting information to a central node. Based on the flow information collected by the 
central node, we can do a global scheduling in the network. The flow forecasting system has 
two core components, the forecasting agent and the centralized controller. In the cluster, the 
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forecasting agent is deployed on each computing node, and the collected information is sent to 
the centralized controller. 
 

 
Fig. 1. The architecture of the forecasting system  

 
The forecasting agent: In this paper, we use the file change notification mechanism of the 

Linux kernel, Inotify. When running Hadoop, we monitor the temporary files and log files, 
extract flow information and send it to the centralized controller in realtime. Because Inotify 
can only monitor the specified directory and cannot monitor its subdirectory, in this paper, we 
design an approach to monitor the subdirectory according to the structure of Hadoop working 
directory and the log directory. 

The centralized controller: The controller’s main function is to collect the forecasting 
information from all the forecasting agents, and store the forecasting information. The 
collected forecasting information includes the flow source/destination addresses, the flow size, 
the start-stop sign of the flow, and the dependencies of flows. By utilizing these information, 
we can better schedule flows. 

3.2 The storage of flow information  
In running Hadoop, the structure of the working directory and the log directory are shown in 
Fig. 2 and Fig. 3. 

 
Fig. 2.  Hadoop working directory 
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Fig. 3.  Hadoop log directory 

 
In the directory name, such as “application_XXXX_XXX”, "XXXX_XXX" represents 

numbers, where the first part is the job label JobId assigned by the Hadoop central control 
procedure. The JobId is globally unique and can be used to distinguish different jobs. 
Therefore, it can be used to determine dependencies among the flows from jobs. The second 
part of the directory name is the task ID of this job, and task ID is unique within each job. In 
the forecasting program, the task ID can be mapped to a flow’s destination address of a reduce 
task. 

The output file of the Hadoop job in the map phase is temporarily stored on the local disk of 
the corresponding node, where the temporary file "file.out.index" stores the sizes information 
of flows to be transmitted to each reduce task from this map task. When the file 
"file.out.index" is created, we can obtain the information of flows from this map task to other 
reduce tasks. In the shuffle phase, reduce task reads the data from the map task node. For 
efficiency, each reduce task reads data from at most 5 map nodes at the same time. Therefore, 
from the "file.out.index" file, we can only obtain the reduce label, and cannot obtain the  
address of the node running a reduce task. From the Hadoop operational logs, we can obtain 
the mapping between the reduce task label and its address, and therefore determine the 
destination address for a flow. The starting and ending time of a flow between a map node and 
a reduce node can also be obtained by analyzing the corresponding log files. 

3.3 Forecasting agent 
The forecasting agent is deployed on each processing node in the cluster, running forecasting 
program, connecting to the central controller, and sending the flow information to the 
centralized controller in realtime. 

The structure of the working directory is shown in Fig. 2. We need to monitor the event of 
the subdirectory creation in the root directory, and also the event of the subdirectory creation 
in the created subdirectory. For example, when the directory "attempt_xxxx_xxx" is created, 
by analyzing the name of the directory, we can obtain JobId of the job and the task labels. 
Then, we need to monitor the creation of the file "file.out.index" in the directory of 
"attempt_xxxx_xxx". This file records the size of the data volume transferred between a map 
node and a reduce node. When this file is created, according to the file format, we analyze the 
file, obtain the corresponding values, and send these information together with JobId and the 
node’s address to the controller. 

For the log subdirectory, with the same approach, we can monitor the directory of 
"container_xxxx_xxx" and the modification events of the "syslog" log. For 
"container_xxxx_xxx" directory, we analyze the name of the directory, and get the task label 
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and job JobId which this log belongs to. For "syslog" modification event, based on the 
keyword, we can obtain the category of this log. If it is a reduce log, the reduce task JobId, the 
task label and the node's address need to be sent to the controller. If it is a map log, we will 
continue to monitor the modification events of this log, and record the position (lastItem) of 
the last analyzed item of the log. When a modification event is detected, we analyze the 
content between the last analyzed location and the end of log, and update lastItem. If there are 
log events associated with staring a reduce task, we extract the label of the reduce task, and set 
the current time as the starting time of the flow between this map node and the reduce node. If 
there are log events indicating the finish of transmission of a reduce task, we extract the reduce 
label, and set the current time as the stopping time of the flow. If a log event indicates that this 
map task has finished all data transmission, we will stop the monitoring for this map log. 
Everytime detecting a new flow, we will transmit the information of the map task JobId, the 
map task label, map node’s address, the start and stop time of the flow, and the reduce task 
label to the collection node. 

In summary, forecasting agents are able to acquire a flow’s source address, destination 
address, the flow size, the flow start and end sign and the job that the flow belongs to. The 
forecasting information of these network flows is divided into three types of information, as 
shown in Table. 1. 
 

Table 1. The type of  information for traffic forecasting 
type source        explanation 

1 file.out.index  Source address, size, and reduce task label of a flow 

2  reduce log Reduce task label and the destination address of the reduce node 

3 map log Start and stop time of a flow between a map node and a reduce node 
 

3.4 Network forecasting information collection 
The centralized controller is in charge of collecting forecasting information from all 
forecasting agents, organizing and storing these information according to the source address 
and destination address of flows. 

In our approach, the forecasting agent can only obtain type 1 information in Table 1, i.e., the 
source address, size and the reduce task label of a flow. The destination address can be 
obtained by analyzing the reduce logs, which record the mappings between reduce task label 
and the reduce node’s address.  

The information collected about a flow also includes which job this flow belongs to. 
Usually, flows in the same job are correlated. Therefore, we can perform job-aware flow 
scheduling, where flows in the same job are scheduled together. In this way, we can avoid 
lagging tasks and reduce the job completion time.  

4. Job-based Priority Scheduling 

4.1 Overview 
In the Hadoop cluster, each reduce task needs to obtain the intermediate results from the map 
task, which is called the shuffle phase. Because the map and reduce tasks may be assigned to 
different nodes, intermediate results at map nodes need to be transferred to the reduce node 
through the network, which will produce a large number of flows. Also, a reduce task can 
proceed to the next step only after obtaining data from all map tasks. When all reduces are 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017                                     243 

done, the final job results are obtained. If we don’t schedule these flows carefully, it is possible 
that some flows may lag behind and extend the overall job completion time. 

Priority scheduling is to assign a priority to each flow. For a high priority flow, it should be 
allocated more network resources, so that the high priority network flow can be completed 
earlier. As shown in Fig. 4, on the same link, there are two flows A and B, sending the same 
amount of data. If fair scheduling is used to allocate the network resources, A and B will 
complete the transmission at the same time, which is 8, as shown in Fig. 4 1). 

 
Fig. 4. The example for priority scheduling 

 
If the priority scheduling is used, all network resources are allocated to A first. When flow A 

is completed, flow B occupies all network resources, as shown in Fig. 4 2). At this time, the 
completion time of flow A is 4, the completion time of flow B is 8. The average completion 
time reduces to 6. It can be seen that the priority scheduling approach can reduce the average 
flow completion time. If flow A has deadline requirements, fair scheduling may not be able to 
satisfy the requirement. 

In this paper, we define the priorities of  jobs based on their time of arrivals. This means that 
an earlier arrived job has a higher priority. Flows in the same job have the same priority. After 
assigning a priority for a flow, it is important to appropriately allocate network resources to 
flows with different priorities. Next, we introduce how we do the path selection for a flow and 
queue management at a switching node. 

4.2 Fat-Tree topology and path management 
Fat-Tree [26,27] topology is a symmetrical multiple stage interconnection with equal division 
bandwidth, good scalability, and abundant equal-cost paths between two nodes. In order to 
make full use of the symmetry and multi-path characteristics of Fat-Tree topology, and 
achieve better load-balancing, we propose two approaches to use the multi-paths between two 
nodes. One approach is packet-based multi-path load balancing, named Spray; the other one is 
the flow-based load-balancing, named Flow-based. 

4.2.1 Spray  
Spray means packet-based load balancing, where packets in a flow are evenly distributed 
among all equal cost paths. In this way, each path will receive roughly the same traffic, 
reducing retransmissions from out-of-sequence packets. 

Since Fat-Tree topology is symmetric, in order to ensure uniform distribution of the packets 
to every path, we adopt destination address based round-robin scheduling approach, where 
packets having the same destination address are assigned to different equal-cost links. As 
shown in Fig. 5, to transmit data between node S1 and S2, the packets will be scheduled in the 
round-robin manner according to their destination addresses. In this example, packets 
transferred between these two nodes are uniformly assigned to all four equal-cost paths. In 
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order to achieve per-destination round-robin scheduling, we set up a counter at the switching 
node of the edge layer and agg layer. 
 

. 
Fig. 5.  per-destination round-robin packet Spray 

 
However, if we do per-packet round-robin, it may result in different loadings on links. For 

example, in Fig. 5, if node S1 transfers data to node S2 and S3 at the same time, it is possible 
that packets to node S2 and S3 may arrive interleaved at switching node E1, and flows to S2 or 
S3 can only utilize two paths among all four paths. 

4.2.2 Flow-based path management approach 
Different from the Spray approach, the Flow-based approach assigns each flow to the 
equal-cost links, and tried to make sure that the utilization on each link is roughly the same. 
Note that the centralized controller has the information of all flows in shuffle phase, and this 
provides the possibility of a centralized scheduling. With centralized scheduling, we can 
choose a suitable path for a flow based on the current flows in the network and link utilization, 
and therefore avoid assigning big flows to the same link.  

Because the path allocation and the flows are dynamic, when a new flow is added, the 
previous optimal allocation may not be optimal for the current time. If we do dynamic optimal 
allocation, it will lead to frequent path changes for a flow. This will result in out-of-sequence 
problem and reduce the throughput. Therefore, in this paper, we don’t change the path of a 
flow once it is allocated. 

According to the characteristics of Fat-Tree topology, there are equal-cost multi-paths in the 
upward path of the switching node in the edge layer and the agg layer. To achieve a better 
load-balancing, we record the usage of the upward link in each switching node at the edge 
layer and the agg layer, i.e., the number of flows assigned to each link. When the forecast 
program detects a new flow, it first obtains the on-path switching node edgeSw at the edge 
layer. Then it determines whether the packets need to be sent to the agg layer. If required, it 
selects the least loaded link from all equal-cost upward links, distributed flow to this link and 
obtains the switching node aggSw at the agg layer. The same operation is performed at the 
aggSw node. Fig. 6 shows the flow chart of flow-based path allocation. 
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Fig. 6. The flow chart of Flow-based path allocation 

4.3 Queue management 
With our proposed priority scheduling, when selecting a packet to send, high priority packet 
will be selected first. Also, when the queue is full, to accept new high priority packets, we need 
to drop low priority packets. In this way, we can quickly finish the transmission of high 
priority packets. 

To avoid head of line blocking by low priority packets, we divide a physical queue into 
multiple logical queues, with each logical queue corresponding to a different priority. An 
arriving packet will be put at the tail of its corresponding queue. When sending a packet, 
among all non-empty queues, packet in the highest priority queue will be selected. When the 
buffer is full, packets in the lowest priority queue will be dropped. 

4.4 Fault tolerance 
In Fat-Tree, the link failure between the processing node and the edge switch can only be 
recovered by replacing the corresponding equipment. Therefore, we only discuss the link 
failure between the agg layer and the core layer, and between the edge layer and the agg layer. 
When a link fails, flows on this link need to be re-routed. Also, we should avoid assigning new 
flows to this link. Next, we discuss agg-core link failures and edge-agg link failures 
respectively. 

4.4.1 The agg-core link failure 
When the link <lSrc-lDst> (lSrc means the node in the agg layer, and lDst in the core layer) 

between the agg layer and the core layer fails, the lSrc node knows the pod tag of the failed 
link, denoted as pod (lSrc). In the lSrc-lDst direction, the affected flows are those assigned on 
link <lSrc-lDst> by the lSrc node. Because there are multi-paths on the upward link, we can 
reassign existing flows on the failed link to other upward links. Also, new flows needs to avoid 
being allocated to the link <lSrc-lDst>. In the lDst-lSrc direction, the flows on the failed link 
are transmitted from other pods to the processing node within the pod (lSrc). Since the 
downward link is unique, the lDst node cannot reallocate flows to other paths. However, 
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according to the Fat-Tree topology, there is a core switch between any two nodes in the agg 
layer, and the flows can be rerouted by other core switches. 
 

 
Fig. 7. The agg-core link failure 

 

 
Fig. 8. The edge-agg link failure 

 
As shown in Fig. 7, when the link between the agg layer (node 100) and the core layer (node 

000) fails, the affected links are thick solid lines, the affected processing nodes and switching 
nodes are shaded.  

4.4.2 The edge-agg link failure 
As shown in Fig. 8, when the link between the edge layer and the agg layer is disconnected, 

the affected links are marked with thick solid lines, the affected processing nodes and 
switching nodes are shaded. Similarly, when the link <lSrc-lDst> (lSrc means the node in the 
edge layer, and lDst in the agg layer) fails, at the lSrc node, all upward flows assigned to the 
failed link need to be reallocated, and new flows on the lSrc node need to avoid being allocated 
to the link <lSrc-lDst>. In the lDst-lSrc direction, since the downward link is unique, the lDst 
node cannot reallocate flows. The flows need to be rerouted by source nodes in other pods. 
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5. Experiment 

5.1 Experimental setup 
In our experiments, we simulate flows in Hadoop shuffle phase using NS-2. With the same 
simulation setting, we compare our job-aware priority scheduling with the non-priority 
scheduling. In the network topology, each link bandwidth is set to 100Mb/s, the buffer 
capacity at a port is set to 100 packets, and the flow size is 20MB. In each experiment, we vary 
the number of jobs, the number of map tasks and reduce tasks, and the way of spreading 
packets, the results are averaged over 10 runs. In the experiment, the number of jobs is varied 
from 2 to 8. In the case of priority scheduling, each job is assigned a different priority. For a 
job, we change the number of map tasks and reduce tasks within this job, and they are set as: 6 
map tasks - 2 reduce tasks, 8 map tasks - 3 reduce tasks, and 10 map tasks - 4 reduce tasks. For 
each setting, the nodes running map tasks and reduce tasks are the same. Therefore, flows 
generated in each setting are the same. To emulate the real network scenario, in our 
experiments, we also consider background traffic, the delay of transmitting flow information 
to a switch and link failures. 

5.2 Experimental results and analysis 

5.2.1 Experimental results 
In the Fat-tree network topology, there are multiple shortest paths between two nodes. To 
schedule flows over multiple paths, we use the Spray and Flow-based approaches presented in 
Section 4.2. Fig. 9 and Fig. 10 show the average job completion time with Spray and 
Flow-based respectively. We can see with each different simulation setting, compared with 
the non-priority scheduling, our job-aware priority scheduling can reduce the average job 
completion time. 

 
 

Fig. 9. Average completion time (Spray-based)      Fig. 10. Average completion time (Flow-based) 
 

Our proposed job-aware priority scheduling gives a higher priority for higher priority jobs, 
and therefore, the completion time for higher priority jobs will be reduced. Fig. 11 and Fig. 12 
verify this conclusion. From the figures, we see that our job-aware priority scheduling can 
reduce the highest priority job completion time. When there are more jobs (means the network 
is more congested), with job-aware priority scheduling, the highest priority flows can obtain 
more network resources to finish their transmission, and therefore we can achieve a higher 
reduction ratio. 
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Fig. 11. Completion time reduction ratio for 
the highest priority job (Spray-based) 

Fig. 12. Completion time reduction ratio for 
the highest priority job (Flow-based) 

5.2.2 Experiment results under background traffic 
For background traffic, we use the Poisson distribution, Normal distribution, and 

Exponential distribution to simulate the background traffic in the real network. Under different 
background traffic distributions, the results have the same trend. Fig. 13 shows the result of 
using the Poisson distribution for background traffic and Flow-based scheduling to spread 
packets. The figure shows that job-aware priority scheduling can reduce the average job 
completion time for background traffic scenario. 
 

 
Fig. 13. Average completion time (Poisson)              Fig. 14. Average completion time (unknown flow) 

 

5.2.3 Experiment results with delay  
For our job-aware priority scheduling, the flow information is collected at executing nodes 

and then transmitted to a centralized controller. There is a non-negligible delay in this process. 
Therefore, in this section, we evaluate the performance with this delay. We model the delay 
with a uniform distribution in [10ms, 500ms]. Under the delay scenario, it is possible that a 
flow’s priority is unknown when we schedule it, and we need to assign a priority to this 
unknown flow. In our simulation, we investigate three approaches for assigning the priority, 
that is, the highest priority, the lowest priority, and the middle priority. 

Fig. 14 shows the result where with Flow-based packet spreading, unknown priority flows 
are assigned the highest priority and the middle priority. We can see that our job-aware priority 
scheduling can still reduce the average job completion time, and especially reduce the 
completion time of the highest priority job. But if the unknown packets are assigned the lowest 
priority, although it can reduce the completion time of the highest priority job, the average 
overall completion time may increase. As shown in Fig. 15, with Flow-based path 
management, when the number of flows is small, the average job completion time is slightly 
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higher than non-priority scheduling. With the Spray path management, as shown in Fig. 16, 
only under the case of 10 map tasks and 4 reduce tasks, our job-aware priority scheduling can 
reduce the average completion time. The reason is that if we assign the lowest priority to the 
unknown packets, this will lead to packet retransmissions and increase the job completion time. 
Therefore, if there is delay of obtaining the flow priority information, we should assign the 
unknown flows a higher priority.  

 
Fig. 15. The average job completion time when 
assigning the lowest priority to unknown flows 
(Flow-based) 

Fig. 16. The average job completion time when  
assigning  the lowest priority to unknown flows 
(Spray-based) 

5.2.4 Experiment results under link failure 
In this section, we evaluate the performance under link failures. In the experiment, after 10 
seconds, we fail a link, and the link is off throughout the experiment.  
 

 
Fig. 17. Average job completion time for  
edge-agg link failure (Spray-based) 

Fig. 18. Average job completion time 
for edge-agg link failure (Flow-based) 

 
Note that for link failures, there are two different kinds of links, agg-core links, and 

edge-agg links. Experimental results show the same trend for these two kinds of link failures, 
and therefore, we only show the results for edge-agg link failure. Fig. 17 and Fig. 18 show the 
case of edge-agg link failure. From the figure, we can see that dynamic fault-tolerance 
approach can correctly reassign flows on the failed link, and our job-aware priority scheduling 
can reduce the average job completion time. But for Spray path management, if the number of 
flows is few, the performance gain is not significant. This is because for Spray path 
management, it requires a similar cost for multi-paths, to avoid out-of-sequence problem. 
Therefore, when a link fails, the Fat-Tree topology is no longer symmetric, leading to different 
bandwidths and delays for these originally equal-cost multi-paths. This will result in packet 
retransmission, weakening the gain of the job-aware priority scheduling. 
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6. Conclusions 

In this paper, we study the flow scheduling problem in the shuffle stage of a Hadoop job. First, 
based on the monitoring and analysis of Hadoop temporary files and log files, we obtain the 
flow information and their dependence in the shuffle phase. Then we send these information to 
a centralized controller to obtain a global view of flows in the shuffle phase. Based on these 
collected information, we propose the job based priority scheduling, where flows belonging to 
the same job have the same priority. Under the Fat-Tree topology, we present two approaches, 
Flow-based and Spray, which make use of the equal-cost multi-path, to achieve the network 
load balancing. In the experimental settings, background traffic, scheduling delay and link 
failure are introduced to simulate the real environment. The results show that the job-aware 
priority scheduling approach can reduce the average job completion time in shuffle phase, and 
can significantly reduce the highest priority job completion time. 
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