References
- Bonnefont-Rousselot D. 2016. Resveratrol and cardiovascular diseases. Nutrients 8: E250. https://doi.org/10.3390/nu8050250
- Huang H, Chen G, Liao D, Zhu Y, Pu R, Xue X. 2016. The effects of resveratrol intervention on risk markers of cardiovascular health in overweight and obese subjects: a pooled analysis of randomized controlled trials. Obes Rev 17: 1329-1340. https://doi.org/10.1111/obr.12458
-
Rege SD, Geetha T, Broderick TL, Babu JR. 2015. Resveratrol protects
$\beta$ amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr Alzheimer Res 12: 147-156. https://doi.org/10.2174/1567205012666150204130009 - Wu H, Wang Y, Wu C, Yang P, Li H, Li Z. 2016. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J Agric Food Chem 64: 9356-9367. https://doi.org/10.1021/acs.jafc.6b04549
-
Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT. 2015. Resveratrol decreases the insoluble
$A{\beta}1$ -42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 310: 641-649. https://doi.org/10.1016/j.neuroscience.2015.10.006 - Kim S, Jin Y, Choi Y, Park T. 2011. Resveratrol exerts antiobesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81: 1343-1351. https://doi.org/10.1016/j.bcp.2011.03.012
-
Wang S, Liang X, Yang Q, Fu X, Zhu M, Rodgers BD, Jiang Q, Dodson MV, Du M. 2016. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK)
${\alpha}1$ in mice fed high-fat diet. Mol Nutr Food Res doi: 10.1002/mnfr.201600746. - Kita Y, Miura Y, Yagasaki K. 2012. Antiproliferative and anti-invasive effect of piceatannol, a polyphenol present in grapes and wine, against hepatoma AH109A cells. J Biomed Biotechnol 2012: 672416.
- Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D. 2004. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol 68: 773-782. https://doi.org/10.1016/j.bcp.2004.05.008
-
Messiad H, Amira-Guebailia H, Houache O. 2013. Reversed phase high performance liquid chromatography used for the physicochemical and thermodynamic characterization of piceatannol/
$\beta$ -cyclodextrin complex. J Chromatogr B 926: 21-27. https://doi.org/10.1016/j.jchromb.2013.02.024 -
Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BB. 2002. Piceatannol inhibits TNF-induced
$NF-{\kappa}B$ activation and$NF-{\kappa}B$ -mediated gene expression through suppression of$I{\kappa}B{\alpha}$ kinase and p65 phosphorylation. J Immunol 169: 6490-6497. https://doi.org/10.4049/jimmunol.169.11.6490 - Dias SJ, Li K, Rimando AM, Dhar S, Mizuno CS, Penman AD, Levenson AS. 2013. Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate 73: 1135-1146. https://doi.org/10.1002/pros.22657
- Jeong SO, Son Y, Lee JH, Cheong YK, Park SH, Chung HT, Pae HO. 2015. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol Med Rep 12: 937-944. https://doi.org/10.3892/mmr.2015.3553
- Uchida-Maruki H, Inagaki H, Ito R, Kurita I, Sai M, Ito T. 2015. Piceatannol lowers the blood glucose level in diabetic mice. Biol Pharm Bull 38: 629-633. https://doi.org/10.1248/bpb.b15-00009
- Piotrowska H, Kucinska M, Murias M. 2012. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750: 60-82. https://doi.org/10.1016/j.mrrev.2011.11.001
- Szekeres T, Saiko P, Fritzer-Szekeres M, Djavan B, Jager W. 2011. Chemopreventive effects of resveratrol and resveratrol derivatives. Ann N Y Acad Sci 1215: 89-95. https://doi.org/10.1111/j.1749-6632.2010.05864.x
- Arai D, Kataoka R, Otsuka S, Kawamura M, Maruki-Uchida H, Sai M, Ito T, Nakao Y. 2016. Piceatannol is superior to resveratrol in promoting neural stem cell differentiation into astrocytes. Food Funct 7: 4432-4441. https://doi.org/10.1039/C6FO00685J
- Ertunc ME, Hotamisligil GS. 2016. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 57: 2099-2114. https://doi.org/10.1194/jlr.R066514
- Sanyal A, Naumann J, Hoffmann LS, Chabowska-Kita A, Ehrlund A, Schlitzer A, Arner P, Bluher M, Pfeifer A. 2017. Interplay between obesity-induced inflammation and cGMP signaling in white adipose tissue. Cell Rep 18: 225-236. https://doi.org/10.1016/j.celrep.2016.12.028
-
Liu L, Li J, Kundu JK, Surh YJ. 2014. Piceatannol inhibits phorbol ester-induced expression of COX-2 and iNOS in HR-1 hairless mouse skin by blocking the activation of
$NF-{\kappa}B$ and AP-1. Inflamm Res 63: 1013-1021. https://doi.org/10.1007/s00011-014-0777-6 - Aval PS, Werner J, Cerqueira A, Balfour-Boehm J, Ulanova M. 2013. Piceatannol modulates lung epithelial cellular responses to Pseudomonas aeruginosa. Inflamm Allergy Drug Targets 12: 297-307. https://doi.org/10.2174/18715281113129990011
- Abd-Elgawad H, Abu-Elsaad N, El-Karef A, Ibrahim T. 2016. Piceatannol increases the expression of hepatocyte growth factor and IL-10 thereby protecting hepatocytes in thioacetamide-induced liver fibrosis. Can J Physiol Pharmacol 94: 779-787. https://doi.org/10.1139/cjpp-2016-0001
- Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. 1985. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419. https://doi.org/10.1007/BF00280883
- Yang SJ, Lim Y. 2014. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 63: 693-701. https://doi.org/10.1016/j.metabol.2014.02.003
-
Kawai T, Akira S. 2007. Signaling to
$NF-{\kappa}B$ by Toll-like receptors. Trends Mol Med 13: 460-469. https://doi.org/10.1016/j.molmed.2007.09.002 - Choi RY, Ham JR, Lee MK. 2016. Esculetin prevents nonalcoholic fatty liver in diabetic mice fed high-fat diet. Chem Biol Interact 260: 13-21. https://doi.org/10.1016/j.cbi.2016.10.013
- Verzola D, Bonanni A, Sofia A, Montecucco F, D'Amato E, Cademartori V, Parodi EL, Viazzi F, Venturelli C, Brunori G, Garibotto G. 2016. Toll-like receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease. J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12129.
-
Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. 1997. Protection from obesity-induced insulin resistance in mice lacking
$TNF-{\alpha}$ function. Nature 389: 610-614. https://doi.org/10.1038/39335 - Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. 1996. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesityinduced insulin resistance. Science 271: 665-668. https://doi.org/10.1126/science.271.5249.665
-
Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE. 2001. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of
$Ikk{\beta}$ . Science 293: 1673-1677. https://doi.org/10.1126/science.1061620 - Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. 2002. A central role for JNK in obesity and insulin resistance. Nature 420: 333-336. https://doi.org/10.1038/nature01137