DOI QR코드

DOI QR Code

Preparation and Characterization of a High Toughness Carbon/Epoxy Composite

고인성 탄소/에폭시 복합재료의 제조 및 특성 분석

  • Lee, Jee Eun (Advanced Composite Material Division) ;
  • Won, Jong Sung (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Park, Jong Hyun (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Kim, Chun Su (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Lee, Seung Goo (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University)
  • 이지은 ((주)넥스컴스) ;
  • 원종성 (충남대학교 유기소재.섬유시스템공학과) ;
  • 박종현 (충남대학교 유기소재.섬유시스템공학과) ;
  • 김춘수 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이승구 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2017.01.11
  • Accepted : 2017.02.15
  • Published : 2017.02.28

Abstract

Interlaminar delamination is an important problem in applications of carbon fiber reinforced composites. Delamination occurs due to the presence of matrix cracks, causes fiber breakage, and results in the loss of stiffness and strength, which may lead to safety and reliability problems. In this study, the effect of polyethersulfone (PES) of the epoxy resin on interlaminar shear strength and fracture toughness of carbon/epoxy composites was investigated. Consequently, interlaminar bonding increased with proper addition of PES, but excess PES led to loss of interlaminar bonding of the carbon/epoxy composite.

Keywords

References

  1. K. S. Kim, K. M. Bae, S. Y. Oh, M. K. Seo, C. G. Kang, and S. J. Park, "Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles", Elastomers and Composites, 2012, 47, 65-74. https://doi.org/10.7473/EC.2012.47.1.065
  2. N. T. Kamar, L. T. Drzal, A. Lee, and P. Askeland, "Nanoscale Toughening of Carbon Fiber Reinforced/epoxy Polymer Composites (CFRPs) Using a Triblock Copolymer", Polymer, 2017, 111, 36-47. https://doi.org/10.1016/j.polymer.2017.01.009
  3. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, "Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites?", Compos. Part A: Appl. Sci. Manuf., 2004, 35, 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
  4. C. R. Joe, H. S. Kim, and K. S. Kim, "Mechanical Characteristics of Carbon/Epoxy Composite for Aircraft Control System", J. Korean Soc. Compos. Mater., 1999, 12, 19-27.
  5. J. Li, P.-L. Xu, Y.-K. Zhu, J.-P. Ding, L.-X. Xue, and Y.-Z. Wang, "A Promising Strategy for Chemical Recycling of Carbon Fiber/thermoset Composites: Self-accelerating Decomposition in a Mild Oxidative System", Green Chemistry, 2012, 14, 3260-3263. https://doi.org/10.1039/c2gc36294e
  6. Q. Wang, H. Ning, U. Vaidya, S. Pillay, and L.-A. Nolen, "Fiber Content Measurement for Carbon Fiber-reinforced Thermoplastic Composites Using Carbonization-in-nitrogen Method", J. Thermoplast. Compos. Mater., 2016, 1, 1-12.
  7. H. Li and K. Englund, "Recycling of Carbon Fiber-reinforced Thermoplastic Composite Wastes from the Aerospace Industry", J. Compos. Mater., 2016, 50, 1-9.
  8. B. Y. Kang, J. Y. Han, C. H. Hong, and B. Y. Moon, "A Study on Analysis for Wind Turbine Blades Using Composites Materials", Proceedings of the KFMA Annyal Meeting, 2010, 12, 287-292.
  9. B. Fernandez, M. A. Corcuera, C. Marieta, and I. Mondragon, "Rheokinetic Variations During Curing of a Tetrafunctional Epoxy Resin Modified with Two Thermoplastics", Eur. Polym. J., 2001, 37, 1863-1879. https://doi.org/10.1016/S0014-3057(01)00045-3
  10. K. Mimura, H. Ito, and H. Fujioka, "Improvement of Thermal and Mechanical Properties by Control of Morphologies in PES-modified Epoxy Resins", Polymer, 2000, 41, 4451-4459. https://doi.org/10.1016/S0032-3861(99)00700-4
  11. J. B. Cho, J. W. Hwang, K. Cho, J. H. An, and C. E. Park, "Effects of Morphology on Toughening of Tetrafunctional Epoxy Resins with Poly(ether imide)", Polymer, 1993, 34, 4832-4836. https://doi.org/10.1016/0032-3861(93)90005-U
  12. W. B. Liu, W. F. Kuo, C. J. Chiang, and F. C. Chang, "In situ Compatibilization of PBT/PPO Blends", Eur. Polym. J., 1996, 32, 91-99. https://doi.org/10.1016/0014-3057(95)00115-8
  13. D. K. Seo, N. R. Ha, J. H. Lee, H. G. Park, and J. S. Bae, "Property Evaluation of Epoxy Resin based Aramid and Carbon Fiber Composite Materials", Textile Coloration and Finishing, 2015, 27, 11-17. https://doi.org/10.5764/TCF.2015.27.1.11
  14. W. Chen, P. Li, Y. Yu, and X. Yang, "Curing Kinetics Study of an Epoxy Resin System for T800 Carbon Fiber Filament Wound Composites by Dynamic and Isothermal DSC", J. Appl. Polym. Sci., 2007, 107, 1493-1499.
  15. K-Y. Kim and L. Ye, "Interlaminar Fracture Toughness of CF/ PEI Composites at Elevated Temperatures: Roles of Matrix Toughness and Fibre/matrix Adhesion", Compos. Part A: Appl. Sci. Manuf., 2004, 35, 477-487. https://doi.org/10.1016/j.compositesa.2003.10.005

Cited by

  1. Ladder-Structured Polysilsesquioxane/Al2O3 Nanocomposites for Transparent Wear-Resistant Windows vol.19, pp.6, 2018, https://doi.org/10.1007/s12221-018-8217-9