DOI QR코드

DOI QR Code

Fabrication of TiC powder by carburization of TiH2 powder

타이타늄 하이드라이드 분말의 침탄에 의한 타이타늄 카바이드 분말 제조

  • Lee, Hun-Seok (Materials Implementation Department, Korea Institute Materials Science (KIMS)) ;
  • Seo, Hyang-Im (Materials Implementation Department, Korea Institute Materials Science (KIMS)) ;
  • Lee, Young-Seon (Materials Deformation Department, Korea Institute Materials Science (KIMS)) ;
  • Lee, Dong-Jun (Materials Deformation Department, Korea Institute Materials Science (KIMS)) ;
  • Wang, Jei-Pil (Department of Metallurical Enginerring, Pukyong National University) ;
  • Lee, Dong-Won (Materials Implementation Department, Korea Institute Materials Science (KIMS))
  • 이훈석 (재료연구소 소재실용화연구실) ;
  • 서향임 (재료연구소 소재실용화연구실) ;
  • 이영선 (재료연구소 소재성형연구실) ;
  • 이동준 (재료연구소 소재성형연구실) ;
  • 왕제필 (부경대학교 금속공학과) ;
  • 이동원 (재료연구소 소재실용화연구실)
  • Received : 2016.11.08
  • Accepted : 2016.12.09
  • Published : 2017.02.28

Abstract

Titanium carbide (TiC) powders are successfully synthesized by carburization of titanium hydride ($TiH_2$) powders. The $TiH_2$ powders with size lower than $45{\mu}m$ (-325 Mesh) are optimally produced by the hydrogenation process, and are mixed with graphite powder by ball milling. The mixtures are then heat-treated in an Ar atmosphere at $800-1200^{\circ}C$ for carburization to occur. It has been experimentally and thermodynamically determined that the de-hydrogenation, "$TiH_2=Ti+H_2$", and carburization, "Ti + C = TiC", occur simultaneously over the reaction temperature range. The unreacted graphite content (free carbon) in each product is precisely measured by acid dissolution and by the filtering method, and it is possible to conclude that the maximal carbon stoichiometry of $TiC_{0.94}$ is accomplished at $1200^{\circ}C$.

Keywords

References

  1. A. T. Santhanam: The Chemistry of Transition Metal Carbides and Nitrides, S.T. Oyama(Ed.), Blackle Academic & Professional, UK(1996) 28.
  2. E. K. Storms: The Refractory Carbides, Academic Press, UK(1967) 9.
  3. F. H. Sam: Advances in Powder Metallurgy, I. Chang and Y. ZhaO(Ed.), Woodhead Publishing, USA (2013) 202.
  4. P. Ettmayer, H. Kolaska, W. Lengauer and K. Dreyer: Int. J. Refract. Met. Hard Mater. 13 (1995) 343. https://doi.org/10.1016/0263-4368(95)00027-G
  5. M. B. Rahaei, R. Y. Rad, A. Kazemzadeh and T. Ebadzadeh: Powder Technol., 217 (2012) 369. https://doi.org/10.1016/j.powtec.2011.10.050
  6. C. R. Rambo, J. Cao, O. Rusina and H. Sieber: Carbon, 43 (2005) 1174. https://doi.org/10.1016/j.carbon.2004.12.009
  7. W. Sena, H. Sun, B. Yang, B. Xu, W. Ma, D. Liu and Y. Dai: Int. J. Refract. Met. Hard Mater., 28 (2010) 628. https://doi.org/10.1016/j.ijrmhm.2010.06.005
  8. D. W. Lee, S. Alexandrovskii and B. K. Kim: Mater. Chem. Phys., 88 (2004) 23. https://doi.org/10.1016/j.matchemphys.2004.02.005
  9. W. Sen, B.Q. Xu, B. Yang, H.Y. Sun, J.X. Song, H.L. Wan and Y.N. Dai: T. Nonferr. Metal. Soc., 21 (2011) 185. https://doi.org/10.1016/S1003-6326(11)60697-3
  10. T. Morimoto and K. Miura: Langmuir 1(1985) 658. https://doi.org/10.1021/la00066a004

Cited by

  1. Pre-treatments of initial materials for controlling synthesized TaC characteristics in the SHS process vol.25, pp.3, 2018, https://doi.org/10.4150/KPMI.2018.25.3.251