DOI QR코드

DOI QR Code

Performance Evaluation of Bone Plates Consisted of BGF/PLA Composite Material according to Body Fluid Exposure Conditions

BGF/PLA 복합재료를 이용한 골절치료용 고정판의 체액 노출 조건에 따른 성능평가

  • Jung, Kyung-Chae (School of Mechanical Engineering, Chung-Ang University) ;
  • Han, Min-Gu (School of Mechanical Engineering, Chung-Ang University) ;
  • Mehboob, Ali (School of Mechanical Engineering, Chung-Ang University) ;
  • Chang, Seung-Hwan (School of Mechanical Engineering, Chung-Ang University)
  • Received : 2016.09.07
  • Accepted : 2017.01.18
  • Published : 2017.02.28

Abstract

The aim of this study is to fabricate composite bone plates consisted of unidirectional biodegradable glass fibers (BGF) and polylactic acid (PLA) and evaluate the performance of the composite bone plates according to the temperature ($50.0^{\circ}C$) of PBS (Phosphate Buffer Saline) solution and exposure time (0~3 weeks). Mechanical characteristics, such as bending stiffness, flexural strength, water uptake and mass loss, were investigated and the results showed that mechanical properties of the plates decreased as soaking duration increased due to loss of composite material.

본 연구에서는 일방향 생분해성 유리섬유(BGF)와 친환경 생분해성 수지인 폴리락트산(PLA)을 이용하여 골절치료용 복합재료 고정판을 제작하고 체액 노출에 따른 고정판의 성능 변화를 확인하고자 $50.0^{\circ}C$ 온도조건으로 설정된 인산완충식염수(PBS)에 제작된 생분해성 고정판을 0~3주 동안 노출시켜 질량 변화를 측정하고 4점 굽힘 실험을 수행하였다. 굽힘 강성, 수분 흡수율, 그리고 질량 감소율과 같은 기계적 특성 변화를 파악하였으며 실험 결과로부터 노출 기간이 증가함에 따라 고정판을 구성하고 있는 생분해성 재료들의 손실로 인해 기계적 물성이 서서히 저하되는 경향을 보이는 것을 확인하였다.

Keywords

References

  1. Sivakumar, M., Mudali, U.K., and Rajeswari, S., "Investigation of Failures in Stainless Steel Orthopaedic Implant Devices: Fatigue Failure due to Improper Fixation of a Compression Bone Plate," Journal of Materials Science Letters, Vol. 13, No. 2, 1994, pp. 142-145. https://doi.org/10.1007/BF00416827
  2. Kanchanomai, C., Phiphobmongkol, V., and Muanjan, P., "Fatigue Failure of an Orthopedic Implant - A Locking Compression Plate," Engineering Failure Analysis, Vol. 15, No. 5, 2008, pp. 521-530. https://doi.org/10.1016/j.engfailanal.2007.04.001
  3. Lin, S.T., Krebs, S.L., Kadiyala, S., Leong, K.W., Lacourse, W.C., and Kumar, B., "Development of Bioabsorbable Glass Fibres," Biomaterials, Vol. 15 No. 13, 1994, pp. 1057-1061. https://doi.org/10.1016/0142-9612(94)90091-4
  4. Kobayashi, H.Y.L., Brauer, D.S., and Russel, C., "Mechanical Properties of a Degradable Phosphate Glass Fibre Reinforced Polymer Composite for Internal Fracture Fixation," Materials Science and Engineering, Vol. 30, No. 7, 2010, pp. 1003-1007. https://doi.org/10.1016/j.msec.2010.04.017
  5. Hoppe, A., Güldal, N.S., and Boccaccini, A.R., "A Review of the Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-ceramics," Biomaterials, Vol. 32, No. 11, 2011, pp. 2757-2774. https://doi.org/10.1016/j.biomaterials.2011.01.004
  6. Timo, J., Jukka, U., and Elina, H., "Resorbable Composites with Bioresorbable Glass Fibers for Load-bearing Applications. In vitro Degradation and Degradation Mechanism," Acta Biomaterialia, Vol. 9, No. 1, 2013, pp. 4868-4877. https://doi.org/10.1016/j.actbio.2012.08.052
  7. Felfel, R.M., Ahmed, I., Parsons, A.J., and Rudd, C.D., "Bioresorbable Composite Screws Manufatured via Forging Process: Pull-out, Shear, Flexural and Degradation Characteristics," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 18, 2013, pp. 108-122. https://doi.org/10.1016/j.jmbbm.2012.11.009
  8. Han, N., Ahmed, I., Parsons, A.J., Harper, L., Scotchford, C.A., Scammell, B.E., Rudd, C.D., "Influence of Screw Holes and Gamma Sterilization on Properties of Phosphate Glass Fiberreinforced Composite Bone Plates," Journal of Biomaterials Applications, Vol. 27, No. 8, 2013, pp. 990-1002. https://doi.org/10.1177/0885328211431855
  9. Parsons, A.J., Ahmed, I., Haque, P., Fitzpatrick, B., Niazi, M.I.K., Walker, G.S., and Rudd, C.D., "Phosphate Glass Fibre Composites for Bone Repair," Journal of Bionic Engineering, Vol. 6, No. 4, 2009, pp. 318-323. https://doi.org/10.1016/S1672-6529(08)60132-8
  10. Ahmed, I., Jones, I.A., Parsons, A.J., Bernard, J., Farmer, J., Scotchford, C.A., Walker, G.S., and Rudd, C.D., "Composites for Bone Repair: Phosphate Glass Fibre Reinforced PLA with Varying Fibre Architecture," Journal of Materials Science: Materials in medicine, Vol. 22, No. 8, 2011, pp. 1825-34. https://doi.org/10.1007/s10856-011-4361-0
  11. Haque, P., Parsons, A.J., Barker, I.A., Ahmed, I., Irvine, D.J., Walker, G.S., and Rudd, C.D., "Interfacial Properties of Phosphate Glass Fibres/PLA Composites: Effect of the end Functionalities of Oligomeric PLA Coupling Agents," Composites Science nad Technology, Vol. 70, No. 13, 2010, pp. 1854-60. https://doi.org/10.1016/j.compscitech.2010.06.012
  12. Jiang, G., Evans, M.E., Jones, I.A., Rudd, C.D., Scotchford, C.A., and Walker, G.S., "Preparation of Poly(epsilon-caprolactone)/continuous Bioglass Fibre Composite using Monomer Transfer Moulding for Bone Implant," Biomaterials, Vol. 26, No. 15, 2005, pp. 2281-8. https://doi.org/10.1016/j.biomaterials.2004.07.042
  13. Andriano, K.P., Daniels, A.U., and Heller, J., "Biocompatibility and Mechanical-Properties of a Totally Absorbable Composite-Material for Orthopedic Fixation Devices," Journal of Applied Biomaterials, Vol. 3, No. 3, 1992, pp. 197-206. https://doi.org/10.1002/jab.770030306
  14. Mehboob, H., Bae, J.H., Han, M.G., and Chang, S.H., "Effect of Air Plasma Treatment on Mechanical Properties of Bioactive Composites for Medical Application: Composite Preparation and Characterization," Composite Structures, Vol. 143, 2016, pp. 23-32. https://doi.org/10.1016/j.compstruct.2016.02.012

Cited by

  1. Experimental study on degradation of mechanical properties of biodegradable magnesium alloy (AZ31) wires/poly(lactic acid) composite for bone fracture healing applications vol.210, pp.None, 2019, https://doi.org/10.1016/j.compstruct.2018.12.011