References
- Sivakumar, M., Mudali, U.K., and Rajeswari, S., "Investigation of Failures in Stainless Steel Orthopaedic Implant Devices: Fatigue Failure due to Improper Fixation of a Compression Bone Plate," Journal of Materials Science Letters, Vol. 13, No. 2, 1994, pp. 142-145. https://doi.org/10.1007/BF00416827
- Kanchanomai, C., Phiphobmongkol, V., and Muanjan, P., "Fatigue Failure of an Orthopedic Implant - A Locking Compression Plate," Engineering Failure Analysis, Vol. 15, No. 5, 2008, pp. 521-530. https://doi.org/10.1016/j.engfailanal.2007.04.001
- Lin, S.T., Krebs, S.L., Kadiyala, S., Leong, K.W., Lacourse, W.C., and Kumar, B., "Development of Bioabsorbable Glass Fibres," Biomaterials, Vol. 15 No. 13, 1994, pp. 1057-1061. https://doi.org/10.1016/0142-9612(94)90091-4
- Kobayashi, H.Y.L., Brauer, D.S., and Russel, C., "Mechanical Properties of a Degradable Phosphate Glass Fibre Reinforced Polymer Composite for Internal Fracture Fixation," Materials Science and Engineering, Vol. 30, No. 7, 2010, pp. 1003-1007. https://doi.org/10.1016/j.msec.2010.04.017
- Hoppe, A., Güldal, N.S., and Boccaccini, A.R., "A Review of the Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-ceramics," Biomaterials, Vol. 32, No. 11, 2011, pp. 2757-2774. https://doi.org/10.1016/j.biomaterials.2011.01.004
- Timo, J., Jukka, U., and Elina, H., "Resorbable Composites with Bioresorbable Glass Fibers for Load-bearing Applications. In vitro Degradation and Degradation Mechanism," Acta Biomaterialia, Vol. 9, No. 1, 2013, pp. 4868-4877. https://doi.org/10.1016/j.actbio.2012.08.052
- Felfel, R.M., Ahmed, I., Parsons, A.J., and Rudd, C.D., "Bioresorbable Composite Screws Manufatured via Forging Process: Pull-out, Shear, Flexural and Degradation Characteristics," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 18, 2013, pp. 108-122. https://doi.org/10.1016/j.jmbbm.2012.11.009
- Han, N., Ahmed, I., Parsons, A.J., Harper, L., Scotchford, C.A., Scammell, B.E., Rudd, C.D., "Influence of Screw Holes and Gamma Sterilization on Properties of Phosphate Glass Fiberreinforced Composite Bone Plates," Journal of Biomaterials Applications, Vol. 27, No. 8, 2013, pp. 990-1002. https://doi.org/10.1177/0885328211431855
- Parsons, A.J., Ahmed, I., Haque, P., Fitzpatrick, B., Niazi, M.I.K., Walker, G.S., and Rudd, C.D., "Phosphate Glass Fibre Composites for Bone Repair," Journal of Bionic Engineering, Vol. 6, No. 4, 2009, pp. 318-323. https://doi.org/10.1016/S1672-6529(08)60132-8
- Ahmed, I., Jones, I.A., Parsons, A.J., Bernard, J., Farmer, J., Scotchford, C.A., Walker, G.S., and Rudd, C.D., "Composites for Bone Repair: Phosphate Glass Fibre Reinforced PLA with Varying Fibre Architecture," Journal of Materials Science: Materials in medicine, Vol. 22, No. 8, 2011, pp. 1825-34. https://doi.org/10.1007/s10856-011-4361-0
- Haque, P., Parsons, A.J., Barker, I.A., Ahmed, I., Irvine, D.J., Walker, G.S., and Rudd, C.D., "Interfacial Properties of Phosphate Glass Fibres/PLA Composites: Effect of the end Functionalities of Oligomeric PLA Coupling Agents," Composites Science nad Technology, Vol. 70, No. 13, 2010, pp. 1854-60. https://doi.org/10.1016/j.compscitech.2010.06.012
- Jiang, G., Evans, M.E., Jones, I.A., Rudd, C.D., Scotchford, C.A., and Walker, G.S., "Preparation of Poly(epsilon-caprolactone)/continuous Bioglass Fibre Composite using Monomer Transfer Moulding for Bone Implant," Biomaterials, Vol. 26, No. 15, 2005, pp. 2281-8. https://doi.org/10.1016/j.biomaterials.2004.07.042
- Andriano, K.P., Daniels, A.U., and Heller, J., "Biocompatibility and Mechanical-Properties of a Totally Absorbable Composite-Material for Orthopedic Fixation Devices," Journal of Applied Biomaterials, Vol. 3, No. 3, 1992, pp. 197-206. https://doi.org/10.1002/jab.770030306
- Mehboob, H., Bae, J.H., Han, M.G., and Chang, S.H., "Effect of Air Plasma Treatment on Mechanical Properties of Bioactive Composites for Medical Application: Composite Preparation and Characterization," Composite Structures, Vol. 143, 2016, pp. 23-32. https://doi.org/10.1016/j.compstruct.2016.02.012
Cited by
- Experimental study on degradation of mechanical properties of biodegradable magnesium alloy (AZ31) wires/poly(lactic acid) composite for bone fracture healing applications vol.210, pp.None, 2019, https://doi.org/10.1016/j.compstruct.2018.12.011