DOI QR코드

DOI QR Code

절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향

Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System

  • 한지수 (부경대학교 에너지자원공학과) ;
  • 엄정기 (부경대학교 에너지자원공학과) ;
  • 이다혜 (부경대학교 에너지자원공학과)
  • Han, Jisu (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Um, Jeong-Gi (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Dahye (Dept. of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2017.02.18
  • 심사 : 2017.02.23
  • 발행 : 2017.02.28

초록

본 연구는 절리의 빈도 및 길이분포가 절리암반의 수리지질학적 특성에 미치는 영향을 평가하기 위하여 이차원 불연속절리망 (DFN; discrete fracture network) 유체유동 해석을 바탕으로 한 수치실험을 수행하였다. 두개의 절리군을 사용하여 절리의 빈도와 길이분포를 달리하며 추계론적으로 생성한 총 51개의 DFN 시스템에 대하여 $0^{\circ}$부터 매 $30^{\circ}$ 간격으로 총 12 방향으로 구현한 총 612개의 $20m{\times}20m$ DFN 블록에서 방향에 따른 블록수리전도도가 산정되었다. 또한, 각각의 DFN 시스템에서 이론적 블록수리전도도와 더불어 주 수리전도도텐서, 평균 블록수리전도도 등이 산정되었다. 절리군의 빈도의 증가 또는 길이의 평균 및 표준편차 증가에 따라 임의 방향으로의 블록수리전도도는 증가하며 DFN 시스템에 대한 등가연속체 취급 가능성이 높아지지만, 절리군 간의 빈도 차이가 커지면 블록수리전도도의 이방성 증대로 인하여 등가연속체 취급 가능성이 낮아질 수 있는 것으로 평가되었다. 두 절리군의 교차각이 작을수록 등가연속체 특성은 빈도 및 길이분포의 변화에 상대적으로 더욱 영향을 받는 것으로 평가되었다. 등가연속체로 취급하기 어려울 정도로 두 절리군의 교차각이 작아도 절리군의 빈도 또는 길이 분포가 증가하면 등가연속체 취급 가능성은 높아진다.

The effects of joint density and size distribution on the hydrogeologic characteristics of jointed rock masses are addressed through numerical experiments based on the 2-D DFN (discrete fracture network) fluid flow analysis. Using two joint sets, a total of 51 2-D joint network system were generated with various joint density and size distribution. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$, and total of 612 $20m{\times}20m$ DFN blocks were prepared to calculate the directional block conductivity. Also, the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated joint network system were determined. The directional block conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the increase of joint density or size distribution. However, the anisotropy of block hydraulic conductivity increases with the increase of density discrepancy between the joint sets, and the chance for the equivalent continuum behavior were found to decrease. The smaller the intersection angle of the two joint sets, the more the equivalent continuum behavior were affected by the change of joint density and size distribution. Even though the intersection angle is small enough that it is difficult to have equivalent continuum behavior, the chance for anisotropic equivalent continuum behavior increases as joint density or size distribution increases.

키워드

참고문헌

  1. Han, J. and Um, J. (2015) Characteristics of block hydraulic conductivity of 2-D DFN system according to block size and fracture geometry, Tunnel & Underground Space. v.25, p.450-461. https://doi.org/10.7474/TUS.2015.25.5.450
  2. Han, J. and Um, J. (2016a) Effect of joint aperture variation on hydraulic behavior of the 2-D DFN system. Tunnel & Underground Space. v.26, p.283-292. https://doi.org/10.7474/TUS.2016.26.4.283
  3. Han, J. and Um, J. (2016b) Effect of joint orientation distribution on hydraulic behavior of the 2-D DFN system. Economic and Environmental Geology. v.49, p.31-41. https://doi.org/10.9719/EEG.2016.49.1.31
  4. Heo, I., Um, J., Kim, Y., Kim, K.H. and Lee, Y.K. (2006) A case study on stochastic fracture network modeling for rock slopes of Busan-Ulsan highway(Reach 5). The Journal of Engineering Geology. v.16, p.337-349.
  5. Kulatilake, P.H.S.W., Wathugala, D.N. and Stephansson, O. (1993) Joint network modeling with a validation exercise in Stripa Mine, Sweden. Int. J. Rock Mech. Min. Sci. & Geomech Abstr. v.30, p.503-526. https://doi.org/10.1016/0148-9062(93)92217-E
  6. Kulatilake, P.H.S.W., Chen, J., Teng, J. Shufang, X. and Pan, G. (1996) Discontinuity geometry characterization for the rock mass around a tunnel close to the permanent shiplock area of the Three Gorges dam site in China. Int. J. Rock Mech. and Min Sci. v.33, p.255-277. https://doi.org/10.1016/0148-9062(95)00060-7
  7. Kulatilake, P.H.S.W., Um, J., Wang, M. and Escandon, R.F. (2003) Stochastic fracture geometry modeling in 3-D including validations for a part of Arrowhead East tunnel site, California, USA. Engineering Geology. v.70, p.131-155. https://doi.org/10.1016/S0013-7952(03)00087-5
  8. Priest, S.D. (1993) Discontinuity analysis for rock engineering. London: Chapman & Hall. 473p.
  9. Priest, S.D. and Hudson, J. (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. v.18, p.183-197. https://doi.org/10.1016/0148-9062(81)90973-6
  10. Um, J., Cho, T. and Kwon, S.J. (2006) A study on the quantified criteria in determining the structural domain of fractured rock mass. Tunnel & Underground Space. v.16, p.1-12.