DOI QR코드

DOI QR Code

전기방식에 따른 콘크리트 중의 탈염효과 및 구조거동

Chloride Extraction and Modified Structural Behavior of Concrete under Electrochemical Treatment

  • 안기용 (한양대학교 건설환경공학과) ;
  • 김기범 (한양대학교 건설환경공학과) ;
  • 양희준 (한양대학교 건설환경공학과)
  • Ann, Ki-Yong (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Ki-Beom (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Yang, Hee-Jun (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2016.12.19
  • 심사 : 2016.12.21
  • 발행 : 2017.02.28

초록

본 연구에서는 콘크리트 중의 철근부식의 보수로 전기방식법을 적용할 경우의 탈염, 부식복원 및 구조거동을 효과적이고 정량적으로 평가하였다. $160{\times}160{\times}1000mm$의 콘크리트 시편을 제작하였으며 피복두께 20 mm의 원형철근 3본을 매립하였으며 콘크리트 타설 시 염소이온 5.0%를 혼입하여 철근부식을 가속한 뒤 전기방식을 인가하였다. 전기방식 전류는 직류 $750mA/m^2$를 2, 4, 8주간 인가하였다. 결과로서 탈염효과는 인가 기간에 따라 증가하였으며 최대 탈염비는 8주간의 인가 시 64.7-83.7%로 측정되었다. 이는 시멘트계에서 염소이온의 50-60%가 고정화됨을 고려할 때, 일정량의 고정화된 염소이온 역시 탈염된 것으로 판단된다. 또한 부식상태는 8주간의 전기방식 이후에도 $6.5mA/m^2$의 부식 전류 및 330 mV (vs. SCE)의 부식전위를 나타내 여전히 부식이 존재함을 확인하였다. 구조거동에 있어 부식의 증가로 인해 콘크리트의 최대하중은 증가하였으나, 전기방식을 적용함에 따라 오히려 최대하중은 감소하였으나 Control시편보다는 상회한 값을 나타내 전기방식이 구조적 악영향은 없음을 확인하였다.

The present study concerns quantitative assessment of chloride extraction, repassivation and structural behavior of concrete. Concrete specimen ($160{\times}160{\times}1000mm$) was fabricated with 3 steel bar located in the middle with 20 mm of the cover depth, containing 5.0% of chloride to accelerate corrosion process, then to be subjected to electrochemical treatment. The current density accounted for $750mA/m^2$ at 2, 4 and 8 weeks. As a result, it was found that an increase in the duration of the treatment resulted in an increase in the chloride extraction, accounting for 64.7-83.7% for the specimen at 8 weeks treatment. It implies that a portion of bound chlorides would turn free to be removed, considering the binding capacity of cement about 50-60% to total ones. Even after the treatment, the corrosion was still active; the corrosion rate was $6.5mA/m^2$ and 330 mV vs. SCE in the potential. For structural behavior, the maximum load was increased by corrosion on the steel bars, which was subsequently lowered by the treatment, but still higher than for control.

키워드

참고문헌

  1. Orellan, J. C., Escadeillas, G., and Arliguie, G., "Electrochemical Chloride Extraction: Efficiency and Side Effects", Cement and Concrete Research, Vol. 34, 2004, pp. 227-234. https://doi.org/10.1016/j.cemconres.2003.07.001
  2. Perez, A., Climent, M. A., and Garces, P., "Electrochemical Extraction of Chlorides from Reinforced Concrete Using a Conductive Cement Paste as the Anode", Corrosion Science, Vol. 52, 2010, pp. 1576-1581. https://doi.org/10.1016/j.corsci.2010.01.016
  3. Canon, A., Garces, P., Climent, M. A., Carmona, J., and Zornoza, E., "Feasibility of Electrochemical Chloride Extraction from Structural Reinforced Concrete Using a Sprayed Conductive Graphite Powder-cement Paste as Anode", Corrosion Science, Vol. 77, 2013, pp. 128-134. https://doi.org/10.1016/j.corsci.2013.07.035
  4. Rasheeduzafar, S., Ali, M. G., and Al-Sulaimani, G. J., "Degradation of Bond Between Reinforcing Steel and Concrete Due to Cathodic Protection Current", ACI Material Journal, Vol. 90, 1993, pp. 8-15.
  5. Ihekwaba, N. M., Hope, B. B., and Hansson, C. M., "Pull-out and Bond Degradation of Steel Rebars in ECE", Cement and Concrete Research, Vol. 26, 1996, pp. 267-282. https://doi.org/10.1016/0008-8846(95)00210-3
  6. Marcotte, T. D., Hansson, C. M., and Hope, B. B., "The Effect of the Electrochemical Chloride Extraction Treatment on Steel-Reinforced Mortar Part II: Microstructural Characterization", Cement and Concrete Research, Vol. 29, 1999, pp. 1561-1568. https://doi.org/10.1016/S0008-8846(99)00117-9
  7. Song, H. W., Jung, M. S., Lee, C. H., Kim, S. H., and Ann, K. Y., "Influence of Chemistry of Chloride Ions in Cement Matrix on Corrosion of Steel", ACI Materials Journal, Vol. 107, 2010, pp. 332-339.
  8. Song, H. W., Lee, C. H., Jung, M. S., and Ann, K. Y., "Development of Chloride Binding Capacity in Cement Pastes and Influence of the pH of Hydration Products", Canadian Journal of Civil Engineering, Vol. 35, 2008, pp. 1427-1434. https://doi.org/10.1139/L08-089
  9. Martinez, I., Rozas, F., Ramos, S., Gonzalez, M., and Castellote, M. "Chloride Electromediation in Reinforced Structures: Preliminary Electrochemical Tests to Detect the Steel Repassivation During the Treatment", Electrochimica Acta, Vol. 181, 2015, pp. 288-300. https://doi.org/10.1016/j.electacta.2015.06.005
  10. Miranda, J. M., Gonzalez, J. A., Cobo, A., and Otero, E., "Several Questions about Electrochemical Rehabilitation Methods for Reinforced Concrete Structures", Corrosion Science, Vol. 48, 2006, pp. 2172-2188. https://doi.org/10.1016/j.corsci.2005.08.014
  11. Congqi, F., Karin, L., Liuguo, C., and Chaoying, Z., "Corrosion Influence on Bond in Reinforced Concrete", Cement and Concrete Research, Vol. 34, 2004, pp. 2159-2167. https://doi.org/10.1016/j.cemconres.2004.04.006
  12. Vidal, T., Castel, A., and Francois, R., "Analyzing Crack Width to Predict Corrosion in Reinforced Concrete", Cement and Concrete Research, Vol. 34, 2004, pp. 165-174. https://doi.org/10.1016/S0008-8846(03)00246-1
  13. Djerbi, A., Bonnet, S., Khelidj, A., and Baroghel-bouny, V., "Influence of Traversing Crack on Chloride Diffusion into Concrete", Cement and Concrete Research, Vol. 38, 2008, pp. 877-883. https://doi.org/10.1016/j.cemconres.2007.10.007
  14. Okada, K., Kobayashi, K., and Miyagawa, T., "Influence of Longitudinal Cracking Due to Reinforcement Corrosion on Characteristics of Reinforced Concrete Members", ACI Material Journal, Vol. 85, 1988, pp. 134-140.
  15. Al-Sulaimani, G. J., Kaleemullah, M., Basunbul, I. A., and Rasheeduzzafar, "Influence of Corrosion and Cracking on Bond Behavior and Strength of Reinforced Concrete Members", ACI Structural Journal, Vol. 87, 1990, pp. 220-231.
  16. Yu, H. G, Lee, B. D., Kim, K. H., and Ahn, T. S., "A Study on the Relationship between Degree of Rust Condition and Bond Strength in Reinforced Concrete Members", Proceedings of Korean Concrete Institute, Vol. 10, 1998, pp. 621-627.