DOI QR코드

DOI QR Code

A Study on Improving Performance of the Vehicular WAVE Antenna System using the EBG structure for ITS wireless communications

동향분석ITS 무선통신을 위한 EBG 구조를 적용한 자동차용 WAVE 안테나 시스템 성능향상연구

  • 연규봉 (자동차부품연구원 스마트운전제어연구센터) ;
  • 이두호 (자동차부품연구원 스마트운전제어연구센터) ;
  • 황진규 (인팩일렉스 통합연구소) ;
  • 양태훈 (인팩일렉스 통합연구소)
  • Received : 2016.05.24
  • Accepted : 2016.09.29
  • Published : 2017.02.28

Abstract

This paper describes a design of the WAVE antenna system in V2X wireless communication systems for Intelligent Transport Systems. The WAVE standard protocols defined 5.825~5.9GHz frequency range for wireless communications with V2X. In a recent, A study of WAVE communication system it has been studied mainly the base station and the OBU technology in order to improve the communication performance of the communication distance. In this paper, the proposed vehicular WAVE antenna using the EBG structure is to improve performance. The proposed WAVE antenna with EBG shows improvement of return loss and radiation beam pattern. The performance of WAVE communication systems for intelligent transport systems is dependent on the performance of antenna. The proposed vehicular antenna for WAVE communication systems shows improvement of return loss for performance.

본 논문은 지능형교통시스템(ITS: Intelligent Transport System)을 위한 V2X 간의 무선통신시스템에 적용되는 WAVE(Wireless Access in Vehicle Environments) 안테나 시스템에 대한 연구이다. 5.825~5.9GHz 주파수대역의 WAVE 통신은 차량이 주행하면서 도로 인프라에 설치되어 있는 기지국과 다른 차량에 장착되어 있는 단말기간의 무선통신에 사용할 수 있도록 하는 표준화된 프로토콜이다. 최근의 WAVE 통신시스템 연구에서는 통신거리에 따른 통신성능을 향상시키기 위해서 기지국과 차량 단말기 기술개발 위주로 연구되고 있으나, 본 논문에서는 시스템 성능 개선 가능성을 검토하고자 차량 루프에 장착가능한 자동차용 안테나 시스템의 설계구조 개선에 대한 연구를 진행하였다. WAVE 안테나 베이스 구조에 EBG(Electro Band-Gap) 구조를 적용하여 비교시뮬레이션을 통해 반사손실이 저감되어 성능이 향상되는 것을 확인하였다.

Keywords

References

  1. Alka V.(2012), "EBG structure and its recent advances in microwave antenna," International journal of scientific research engineering and technology, vol. 1, pp.084-090.
  2. A-sa S., Krachodnok P. and Wongsan R.(2012), "A Highly Directive Antenna using EBG materials as superstrate," Electrical Engineering/ Electronics, computer, Telecommunications and Information Technology (ECTI-COM).
  3. Cheype C., Serier C., Thevenot M., Monediere T., Reineix A. and Jecko B.(2002), "An Electromagnetic BandGap resonator antenna," IEEE Trans. Antennas and Propagation, vol. 50, no. 9, pp.1285-1290. https://doi.org/10.1109/TAP.2002.800699
  4. Feresidis A. P. and Vardaxoglou J. C.(2001), "High gain planar antenna using optimised partially reflective surfaces," IEEE Proceedings-Microwave, Antennas and Propagation, vol. 148, no. 6, pp.345-350.
  5. Feresidis A. P., Goussetis G., Wang S. and Vardaxoglou J. C.(2005), "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas and Propagation, vol. 53, no. 1, pp.209-215. https://doi.org/10.1109/TAP.2004.840528
  6. Gardelli R., Albani M. and Capolino F.(2006), "Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement," IEEE Trans. Antennas and Propagation, vol. 54, no. 7, pp.1979-1990. https://doi.org/10.1109/TAP.2006.877172
  7. Jackosn D. R. and Oliner A. A.(1988), "A leaky-wave analysis of the high-gain printed antenna configuration," IEEE Trans. Antennas and Propagation, vol. 36, no. 7, pp.905-910. https://doi.org/10.1109/8.7194
  8. Jackosn D. R., Oliner A. A. and Ip A.(1993), "Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure," IEEE Trans. Antennas and Propagation, vol. 41, no. 3, pp.344-348. https://doi.org/10.1109/8.233128
  9. Lee D. H., Lee Y. J., Yeo J., Mittra R. and Park W. S.(2007), "Design of Novel Thin Frequency Selective Surface (FSS) Superstrates for Dual-band Directivity Enhancement," IET Proceedings Special Issue on Metamaterials (RF/Microwave and Millimetre-wave Applications), vol. 1, No. 1, pp.248-254.
  10. Lee Y. J., Yeo J., Mittra R. and Park W. S.(2004), "Design of a High-Directivity Electromagnetic Band Gap (EBG) Resonator Antenna Using a Frequency Selective Surface (FSS) Superstrate," Microwave & Optical Technology Letters, vol. 44, no. 6, pp.462-467.
  11. Lee Y. J., Yeo J., Mittra R. and Park W. S.(2005), "Application of Electromagnetic Bandgap(EBG) Superstrates with Controllable Defects for a Class of Patch Antennas as Spatial Angular Filters," IEEE Trans. Antennas and Propagation, vol. 53, no. 1, Part 1, pp.224-235. https://doi.org/10.1109/TAP.2004.840521
  12. Maagt P. de., Gonzalo R., Vardaxoglou Y. C. and Baracco J. -M.(2003), "Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications," IEEE Trans. Antennas and Propagation, vol. 51, no. 10, pp.2667-2677. https://doi.org/10.1109/TAP.2003.817566
  13. Pirhadi A., Hakkak M., Keshmiri F. and Baee R. K.(2007), "Design of Compact Dual Band HighDirective Electromagnetic Bandgap (EBG) Resonator Antenna Using Artificial Magnetic Conductor," IEEE Trans. Antennas and Propagation, vol. 55, no. 6, pp.1682-1690. https://doi.org/10.1109/TAP.2007.898598
  14. Sergio A. and Mario O.(2012), "Design of Multi-Frequency Compact Antennas for Automotive Communications," IEEE Transaction on Antennas and Propagation, vol. 60, no. 12.
  15. Trentini G. V.(1956), "Partially reflecting sheet arrays," IRE Trans. Antennas and Propagation, vol. 4, pp.666-670. https://doi.org/10.1109/TAP.1956.1144455
  16. Varum T., Matos J. N. and Oliveira A.(2012), "Printed antenna for DSRC systems with omnidirectional circular polarization," International IEEE conference on Intelligent Transportation Systems.
  17. Yang F. and Rahmat-Samii Y.(1956), "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: a low mutual coupling design for array applications," IEEE Trans. Antennas and Propagation, vol. 51, no. 4, pp.2936-2946.
  18. Yang H. Y. and Alexopoulos N. G.(1987), "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. Antennas and Propagation, vol. 35, no. 7, pp.860-863. https://doi.org/10.1109/TAP.1987.1144186
  19. Zhao T., Jackson D. R., Williams J. T., Yang H. Y. and Oliner A. A.(2005), "2-D periodic leaky-wave antennas-part I: metal patch design," IEEE Trans. Antennas and Propagation, vol. 53, no. 11, pp.3505-3514. https://doi.org/10.1109/TAP.2005.858579