DOI QR코드

DOI QR Code

데이터 마이닝 기반의 수리부속 수요예측 연구

A Study on Forecasting Spare Parts Demand based on Data-Mining

  • Kim, Jaedong (Center for Defense Management, Korea Institute for Defense Analyses) ;
  • Lee, Hanjun (Center for Defense Acquisition, Korea Institute for Defense Analyses)
  • 투고 : 2016.10.27
  • 심사 : 2016.11.21
  • 발행 : 2017.02.28

초록

수리부속 수요예측은 장비가동률 향상과 국방 운영 예산 효율화 제고를 위한 국방 군수 분야의 핵심 과제 중 하나이다. 현재 우리군은 수리부속 소요 데이터를 활용한 시계열 기법으로 과거 데이터 분석을 통해 수리부속 수요예측에 활용하고 있으나 정확도 제고에 지속적인 노력이 요구되고 있는 실정이다. 이에 본 연구에서는 지난 5개년의 수리부속 18,476개 품목의 수요데이터를 수집하고 데이터마이닝 기법을 활용한 수리부속 수요예측 모델을 제안하였다. 제안한 모델에 따른 실험 결과는 기존 시계열 기법에 비해 개선된 수요예측 정확도를 보였다.

Demand forecasting is one of the most critical tasks in defense logistics, because the failure of the task can bring about a huge waste of budget. Up to date, ROK-MND(Republic of Korea - Ministry of National Defense) has analyzed past component consumption data with time-series techniques to predict each component's demand. However, the accuracy of the prediction still needs to be improved. In our study, we attempted to find consumption pattern using data mining techniques. We gathered an 18,476 component consumption data first, and then derived diverse features to utilize them in identification of demanding patterns in the consumption data. The results show that our approach improves demand forecasting with higher accuracy.

키워드

참고문헌

  1. Kim. Kui-Won, "Forecasting and research for Bigdata Analysis", Joeuddang, pp. 92-137, 2014. http://book.naver.com/bookdb/book_detail.nhn?bid=8143296
  2. Yu. Hyeong-Gon, "Improving the management of spare parts", Security Management Institute, pp. 1-37, 2011. http://policy.nl.go.kr/search/searchDetail.do?rec_key=SH1_UMO20150143072&kwd=%EA%B5%AD%EB%B0 %A9%EB%B6%80
  3. Letourneau, S., Famili, F., Matwin, S., "Data mining for prediction of aircraft component replacement", IEEE Intelligent Systems Journal, pp. 59-66, 1999. https://doi.org/10.1109/5254.809569
  4. Park. Young-Jin, Jeon. Geon-Wook, "A Demand Forecasting for Aircraft Spare using ARMIA", Journal of the Military Operations Research Society of Korea, 34, pp. 79-101, 2008. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE0105 5240
  5. Nam. Bong Woo, Song. Kyung Bin, Kim. Kyu Ho, Cha. Jun Min, "The Spatial Electric Load Forecasting Algorithm using the Multiple Regression Analysis Method", The Korean Institute of Illuminating and Electrical Installation Engineers, pp. 63-70, 2008. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE0095 9324
  6. David F. Findely, Brian C. Monsell, William R. Bell, Mark C. Otto and Bor-Chung Chen, "New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program", Journal of Business and Econometic Statistics, vol. 16, 1988. https://doi.org/10.2307/1392566
  7. Choi. Jae-Il, Jeong. Young-Rak, "Predication of the Number of the Korea Professional Soccer Spectators Using Time-series Data Analysis", Journal of Sport and Leisure Studies, 39, pp. 921-928, 2010. http://www.riss.kr/search/detail/DetailView.do?p_mat_type=1a0202e37d52c72d&control_no=ba5c357985d5b1386aae8a972f9116fb
  8. Chae. Hyun Seok, Chung. Jea Woo, Kim. Jong Dall, "Demand Forecast for Electric Vehicles in Korea Using a Bass Diffusion Model", Korea Environmental Policy and Administration Society, pp. 109-132, 2016. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE0665 0762
  9. Lee. Jong Sung,"Delphi Method", Kyoyookbook, 2001. http://used.kyobobook.co.kr/product/viewBookDetail.ink?cmdtBrcd=7255760563484&orderClick=LIP&Kc=SEB LBkusedsearch
  10. Ashton, A. H., Ashton, R. H. & Davis, M. N., "White-collar robotics: Levering managerial decision making", California Management Review, 37, pp. 83-109, 1994. https://doi.org/10.2307/41165779
  11. Armstrong, J. S. & Graefe, A., "Predicting elections from biographical information about candidates: a test of the index method", Journal of Business Research, 64(7), pp. 699-706, 2011. http://dx.doi.org/10.1016/j.jbusres.2010.08.005
  12. James M. Lyneis., "System dynamics for market forecasting and structural analysis", System Dynamics Review, 16, pp. 3-25, 2000. http://dx.doi.org/10.1002/(sici)1099-1727(200021)16:1<3 ::aid-sdr183>3.0.co;2-5
  13. Lam, W. H. K., and Pan L. P., and Eddie C. M, "Forecasts and Reliability Analysis of Port Cargo throughput in Hong Kong", Journal of Urban Planning and Development, 2004. http://dx.doi.org/10.1061/(asce) 0733-9488(2004)130:3(133)
  14. Kong. D-S, Kwak. Y-H, and Huh. J-H, "Artificial Neural Network Based Energy Demand Prediction for the Urban District Energy Planning", Journal of the Architectural Institute of Korea, 26(2), pp. 221-230, 2010. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE0136 6386
  15. Lee. Yeon-Wook., "The importance of operational spare parts", Defense Daily, 2014.
  16. Sun. Mee-Sun, Woo. Jae-Wong, "A Study on Forecasting of Repair Part Demands of Korean Military: focused on Navy", The Quarterly Journal of Defense Policy Studies, pp. 201-234, 2009. http://kiss.kstudy.com/journal/thesis_name.asp?tname=kiss2002&key=3108692
  17. Kim. H-S, Kim. P-S, "Material Requirements Planning for Military Maintenance Depot", Journal of society of Korea industrial systems engineering, 37, pp. 24-34, 2014. http://scholar.ndsl.kr/schDetail.do?cn=JAKO201406566439139
  18. Moon. Seong-Min, "The Impact of Demand Features on the Performance of Hierarchical Forecasting: Case Study for Spare parts in the Navy", Korean management science review, 29(1), pp. 101-114, 2012. http://scholar.ndsl.kr/schDetail.do?cn=JAKO2012150531 40715 https://doi.org/10.7737/KMSR.2012.29.1.101
  19. Michael J. A. Berry, Gordon S. Linoff, "Data Mining Techniques: For Marketing, Sales and Customer Relationship Managements", John Wiley&Sons, pp.10-15, 2004. http://as.wiley.com/WileyCDA/WileyTitle/product Cd-0470650931.html
  20. Clifton, Christopher: "Definition of Data Mining", Encyclopedia Britannica, 2010. https://global.britannica.com/technology/data-mining
  21. Richard Roiger, Michael Geatz, "Data Mining A Tutorial-Based Primer", Pearson, 2003. https://www.amazon.com/Data-Mining-Tutorial-Based-Primer/dp/0201741288
  22. Lee. Kyu-Youg, Seo. Jun-Yong, "A Case Study on the Inventory Management Using the Datamining", Journal of the Society of Korea Industrial and Systems Engineering, 30(3), pp. 20-27, 2007. http://scholar.ndsl.kr/schDetail.do?cn=JAKO200735836611625
  23. Choi. Gee-Seon, Shin. Gang-Wook, Lim. Sang-Heui, Chun. Myung-Geun, "Short-term Water Demand Forecasting Algorithm Based on Kalman Filtering with Data Mining", Journal of institute of control robotics and systems, 15(10), pp. 1056-1061, 2009. http://scholar.ndsl.kr/schDetail.do?cn=JAKO200935535843994 https://doi.org/10.5302/J.ICROS.2009.15.10.1056
  24. Shin. Gang-Wook, Hong. Sung-Taek, "Data mining analysis for short-term water demand forecasting", Electric power systems research, pp. 14-17, 2009. http://scholar.ndsl.kr/schDetail.do?cn=NPAP08451473
  25. Lee. Sun-a, Chang. Nam-sik, "Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market", Journal of intelligence and information systems, 16, pp. 3-25, 2000. http://scholar.ndsl.kr/schDetail.do?cn=JAKO201510534324147

피인용 문헌

  1. An Empirical Study for Improving Demand Forecasting Process of Fighter Aircraft Parts vol.25, pp.4, 2017, https://doi.org/10.15735/kls.2017.25.4.012
  2. 설비 오류 유형 구조화를 위한 인공신경망 기반 구절 네트워크 구축 방법 vol.19, pp.6, 2017, https://doi.org/10.7472/jksii.2018.19.6.21
  3. Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining Techniques and Managerial Features from the Case of South Korea vol.12, pp.15, 2017, https://doi.org/10.3390/su12156045
  4. 데이터 마이닝을 이용한 패트리어트 수리부속의 간헐적 수요 예측에 관한 연구 vol.22, pp.3, 2017, https://doi.org/10.5762/kais.2021.22.3.234