DOI QR코드

DOI QR Code

Design of Image Recognition Module for Face and Iris Area based on Pixel with Eye Blinking

눈 깜박임 화소 값 기반의 안면과 홍채영역 영상인식용 모듈설계

  • Received : 2016.11.01
  • Accepted : 2017.01.12
  • Published : 2017.02.28

Abstract

In this paper, an USB-OTG (Uiversal Serial Bus On-the-go) interface module was designed with the iris information for personal identification. The image recognition algorithm which was searching face and iris areas, was proposed with pixel differences from eye blinking after several facial images were captured and then detected without any activities like as pressing the button of smart phone. The region of pupil and iris could be fast involved with the proper iris area segmentation from the pixel value calculation of frame difference among the images which were detected with two adjacent open-eye and close-eye pictures. This proposed iris recognition could be fast processed with the proper grid size of the eye region, and designed with the frame difference between the adjacent images from the USB-OTG interface with this camera module with the restrict of searching area in face and iris location. As a result, the detection time of iris location can be reduced, and this module can be expected with eliminating the standby time of eye-open.

본 논문에서는 홍채정보로 개인인증을 위한 USB-OTG(Uiversal Serial Bus On-the-go) 영상인식 모듈을 설계한다. 개인인증을 위해 사용자가 스마트 폰 버튼을 누를 필요가 없도록 스마트 기기를 안면주위의 여러 장의 안면영상을 획득 후, 눈 깜박임에 의한 화소 값 차로 안면과 홍채영역을 검색하는 영상인식 알고리듬을 제안한다. 본 연구에서는 인접한 눈을 뜬 영상과 눈을 감은 영상을 감지한 안면과 홍채 영상의 프레임 화소 값의 차이를 사용한다. 또한, 홍채 영역분할에 의한 동공과 홍채영역 위치를 빠르게 찾을 수 방법을 활용한다. 제안한 빠른 홍채영역의 위치탐색은 눈 영역의 적정한 그리드 크기에 의해 결정할 수 있다. 안면과 홍채영역의 제한된 영역을 탐색하는 홍채인식 카메라 모듈의 USB-OTG 인터페이스 통한 인접영상의 프레임 차이에 의해 검출할 수 있도록 설계하였다. 이로서 스마트 디바이스 사용자가 홍채 인식을 위해 눈을 깜빡이지 않고 대기해야 하는 불편함을 제거함으로써 사용자 편의성을 증대시킬 것으로 기대한다.

Keywords

References

  1. Mingoo Kang et al, "Design of Biometric Information Tracking Scheme for PS-LTE Devices," 2016 KSII conference Vol. 17 No. 2, 2016.12.06. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07069104
  2. Mingoo Kang et al, "Iris recognition module and method," Korea patent No.10-2014-0043566, 2014.04. 11. http://www.kipo.go.kr/
  3. T.Rjaesh, M.Karnan et al, "Performance Analysis of Iris Recognition System-A review," International Journal of Computer Science & Information Technology, 39-50, March 2014. ISSN:2274-0764, http://www.ijcit.com
  4. Mhatre A, Chikkerur S, and Govindaraju V,, "Indexing biometric databases using pyramid technique," International Conference on Audio and Video Based Biometric Person Authentication (AVBPA), pp. 841-849, 2005, https://dx.doi.org/10.1007/11527923_88
  5. Gupta P, Sana A, Mehrotra H, and Jinshong C.H, "An efficient indexing scheme for binary feature based biometric database," Biometric Technology for Human Identification IV, 653909, April 12, 2007. https://dx.doi.org/10.1117/12.719237
  6. Huang Y, Luo S, and Chen E, "An efficient iris recognition system," 2002 International Conference on Machine Learning and Cybernetics, Vol. 1, pp. 450-454, 2002. https://dx.doi.org/10.1109/ICMLC.2002.1176794
  7. Liu Y, Yuan S, Zhu X, and Cui Q, "A practical iris acquisition system and a fast edges locating algorithm in iris recognition," In 20th IEEE Conference on Instrumentation and Measurement Technology, Vol. 1, pp. 166-168, 2003. https://dx.doi.org/10.1109/IMTC.2003.1208145
  8. Sung H, Lim J, Park J, and Lee Y, "Iris recognition using collarette boundary localization," International Conference on Pattern Recognition, Vol. 4, pp. 857-860, Aug., 2004. http://doi.ieeecomputersociety.org/ 10.1109/ ICPR.2004.1333907
  9. Pundlik S.J et al, "Non-ideal iris segmentation using graph cuts," IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Jun. 2008. http://doi.ieeecomputersociety.org/10.1109/ CVPRW.2008.4563108
  10. Proenca H, and Alexandre L.A, "Iris segmentation methodology for non-cooperative recognition," IEE Proceedings on Vision, Image and Signal Processing, 153(2), pp. 199-205, 2006, https://dx.doi.org/10.1049/ip-vis:20050213
  11. Liu X, Bowyer K.W, and Flynn P.J, "Experiments with an improved iris segmentation algorithm," Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 118-123, Oct. 2005, https://dx.doi.org/10.1109/ AUTOID.2005.21
  12. Pan L, Xie M, Zheng T, and Ren J, "A Robust Iris Localization Model Based on Phase Congruency and Least Trimmed Squares Estimation," Image Analysis and Processing, pp. 682-691, 2009, https://dx.doi.org/10.1007/978-3-642-04146-4_73
  13. Ryan W.J, Woodard D.L, Duchowski A.T, and Birchfield S.T,. "Adapting Starburst for Elliptical Iris Segmentation", 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, 2008, DOI: 10.1109/BTAS.2008.4699340
  14. Vatsa M, Singh R and Afzel N, "Improving Iris Recognition Performance Using Segmentation, Quality Enhancement, Match Score Fusion, and Indexingm" IEEE Transactions on Systems, Man, and Cybernetics, pp. 1021-1035, May 2008. https://dx.doi.org/10.1109/TSMCB.2008.922059
  15. Guang Zhu X, ZaiFeng Z, and Ma Y, "Automatic iris segmentation based on local areas," 18th International Conference on Pattern Recognition (ICPR'06), pp. 505-508, 2006. https://dx.doi.org/10.1109/ICPR.2006.300
  16. Mingoo Kang et al,"Method and system for estimating iris region through inducing eye blinking," Korea patent No. 10-2017-0001531, 2017. 01. 04. http://www.kipo.go.kr/
  17. H. Y. Kim et al, "Realtime pupil detecting method for iris recognition," Korea patent No. 10-0397750, 2003. 08. 29. http://www.kipo.go.kr/
  18. http://www.ubikey.co.kr
  19. http://www.hso.co.kr
  20. http://octatco.com/