ON CONSTRUCTIONS OF NEW SUPER EDGE-MAGIC GRAPHS FROM SOME OLD ONES BY ATTACHING SOME PENDANTS

Young-Hun Kim

Abstract

Baskoro et al. [1] provided some constructions of new super edge-magic graphs from some old ones by attaching 1,2 , or 3 pendant vertices and edges. In this paper, we introduce (q, m)-super edge-magic total labeling and we give a construction of new super edge-magic graphs by attaching n pendant vertices and edges under some conditions, for any positive integer n. Also, we give a constraint on our construction.

1. Introduction

Throughout this paper, we only consider finite simple graphs. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of a graph G, respectively. And we denote by (v, e)-graph G a graph with v vertices and e edges. For any positive integer k, we denote by P_{k} the path graph with k vertices. For any graph G and positive integer n, the graph consisting of n disjoint copies of G will be denoted by $n G$.

An edge-magic total labeling on a (v, e)-graph G is a bijection $\lambda: V(G) \cup$ $E(G) \rightarrow\{1,2, \ldots, v+e\}$ with the property that, given any edge $x y$,

$$
\lambda(x)+\lambda(x y)+\lambda(y)=k
$$

for some constant k. Here, k is called the magic sum of G. A graph with an edge-magic total labeling is called edge-magic. In particular, if $\lambda(V)(G))=$ $\{1,2, \ldots, v\}$, then λ is called super edge-magic total labeling and a graph with a super edge-magic total labeling is called super edge-magic.

In [1], one can find the following construction of new super edge-magic graphs from some old ones by adding 1,2 , or 3 pendants.

Theorem 1.1 ([1]). From any super edge-magic (v, e)-graph G with the magic sum k, we can construct a new super edge-magic total graph from G by adding

[^0]one pendant incident to vertex x of G whose label $k-2 v-1$. The magic constant of the new graph is $k^{\prime}=k+2$.
Theorem 1.2 ([1]). Let a (v,e)-graph G be super edge-magic total with the magic sum k and $k \geq 2 v+3$. Then, a new graph formed from G by adding exactly two pendants incident to two distinct vertices x and y of G whose labels $k-2 v$ and $k-2 v-2$ respectively is super edge-magic total with the magic constant $k^{\prime}=k+4$.

Theorem 1.3 ([1]). Let a (v, e)-graph G be super edge-magic total with the magic sum k and $k \geq 2 v+3$. Then, a new graph formed from G by adding exactly three pendants incident to three distinct vertices x, y and z of G whose labels $k-2 v, k-2 v-1$ and $k-2 v-2$ respectively is super edge-magic total with the magic constant $k^{\prime}=k+6$.

In this paper we introduce a new notion called by (q, m)-super edge-magic total labeling. Using this notion, we will give a generalized construction of the previous ones. At the last we will give a constraint on choosing a positive integer m in our construction.

2. Main results

2.1. Our construction

In [3], one can find the following lemma which gives a necessary and sufficient condition for a graph being super edge-magic.

Lemma 2.1 ([3]). $A(v, e)$-graph G is super edge-magic if and only if there exists a bijection $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ such that the set

$$
S=\{\lambda(x)+\lambda(y) \mid x y \in E(G)\}
$$

consists of e consecutive integers. In such a case, λ extends to a super edgemagic labeling of G with a magic sum $k=v+e+s$, where $s=\min S$ and

$$
S=\{k-(v+1), k-(v+2), \ldots, k-(v+e)\}
$$

Analogously, we define (q, m)-super edge-magic total labeling as following:
Let G be a (v, e)-graph, $\mu: V(G) \rightarrow\{1,2, \ldots, v\}$ be a bijection and let q be an indeterminate. Suppose that there is a positive integer m such that

$$
S=\{\mu(x)+\mu(y) \mid x y \in E(G)\}
$$

is equal to

$$
\{k-(v+q), k-(v+q+m), \ldots, k-(v+q+(e-1) m)\}
$$

where $k=v+q+(e-1) m+s$ and $s=\min S$. In this case, define a map $\lambda: V(G) \cup E(G) \rightarrow\{1,2, \ldots, v\} \cup\{v+q, v+q+m, \ldots, v+q+(e-1) m\}$ by

$$
\begin{cases}\lambda(x)=\mu(x) & \text { for all } x \in V(G) \\ \lambda(x y)=k-(\mu(x)+\mu(y)) & \text { for all } x y \in E(G)\end{cases}
$$

Then for all $x y \in E(G), \lambda(x)+\lambda(y)+\lambda(x y)=k$.

Definition. In the previous situations, λ is called a (q, m)-super edge-magic total labeling, G is called a (q, m)-super edge-magic graph and k is called the magic sum of G.

Example 2.2. All super edge-magic graphs are (1,1)-super edge-magic graphs by Lemma 2.1.

Now, we introduce a generalized construction of the constructions induced by Theorems 1.1, 1.2, and 1.3.

Theorem 2.3. Let G be a super edge-magic (v, e)-graph and λ be a super edge-magic total labeling with the magic sum k. Suppose that for fixed positive integers m and n, there is a (q, m)-super edge-magic total labeling λ^{\prime} on $n P_{2}$ with the magic sum k^{\prime}. If for all $i, j \in\{1,2, \ldots, n\}, \lambda^{\prime-1}(i) \lambda^{\prime-1}(j) \notin E\left(n P_{2}\right)$ and

$$
2 v+s+(n-1) m-2 n+1 \leq k \leq 3 v+s-2 n,
$$

where $s=\min \left\{\lambda^{\prime}(u)+\lambda^{\prime}(v) \mid u v \in E\left(n P_{2}\right)\right\}$, then a new graph \tilde{G} formed from G by adding exactly n pendants incident to n distinct vertices whose labels are

$$
k+2 n-(2 v+s), k+2 n-(2 v+s+m), \ldots, k+2 n-(2 v+s+(n-1) m),
$$

respectively is super edge-magic. Moreover, there is a super edge-magic total labeling on \tilde{G} with the magic sum $k+2 n$.

Proof. The hypothesis

$$
2 v+s+(n-1) m-2 n+1 \leq k \leq 3 v+s-2 n
$$

implies that

$$
k+2 n-(2 v+s+(n-1) m) \geq 1 \text { and } k+2 n-(2 v+s) \leq v
$$

So $k+2 n-(2 v+s), k+2 n-(2 v+s+m), \ldots, k+2 n-(2 v+s+(n-1) m)$ are vertex labels of G.

Since λ^{\prime} is a (q, m)-super edge-magic total labeling on $n P_{2}$, the set

$$
\begin{aligned}
S^{\prime} & =\left\{\lambda^{\prime}(x)+\lambda^{\prime}(y) \mid x y \in E\left(n P_{2}\right)\right\} \\
& =\left\{k^{\prime}-(2 n+q), k^{\prime}-(2 n+q+m), \ldots, k^{\prime}-(2 n+q+(e-1) m)\right\} .
\end{aligned}
$$

For $i=1,2, \ldots, n$, let u_{i} and v_{i} be the vertices of $n P_{2}$ such that

$$
\lambda^{\prime}\left(u_{i}\right)+\lambda^{\prime}\left(v_{i}\right)=k^{\prime}-(2 n+q+(n-i) m) \text { and } \lambda^{\prime}\left(u_{i}\right) \in\{1,2, \ldots, n\} .
$$

Since for all $i, j \in\{1,2, \ldots, n\}, \lambda^{\prime-1}(i) \lambda^{\prime-1}(j) \notin E\left(n P_{2}\right), u_{1}, u_{2}, \ldots, u_{n}$, $v_{1}, v_{2}, \ldots, v_{n}$ are $2 n$ distinct vertices of $n P_{2}$.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be vertices of G such that

$$
\lambda\left(x_{i}\right)=k+2 n-(2 v+s+(i-1) m)
$$

for each $i=1,2, \ldots, n$. Also, let $y_{1}, y_{2}, \ldots, y_{n}$ be attached pendant vertices of \tilde{G} incident to $x_{1}, x_{2}, \ldots, x_{n}$, respectively. Define a map $\tilde{\lambda}: V(\tilde{G}) \cup E(\tilde{G}) \rightarrow$
$\{1,2, \ldots, v+e+2 n\}$ by

$$
\begin{cases}\tilde{\lambda}(x)=\lambda(x) & \text { for all } x \in V(G) \\ \tilde{\lambda}\left(y_{i}\right)=v+\lambda^{\prime}\left(u_{i}\right) & \text { for all } i=1,2, \ldots, n \\ \tilde{\lambda}(x y)=\lambda(x y)+2 n & \text { for all } x y \in E(G) \\ \tilde{\lambda}\left(x_{i} y_{i}\right)=v+\lambda^{\prime}\left(v_{i}\right) & \text { for all } i=1,2, \ldots, n\end{cases}
$$

Then for all $x y \in E(G)$,

$$
\tilde{\lambda}(x)+\tilde{\lambda}(y)+\tilde{\lambda}(x y)=\lambda(x)+\lambda(y)+\lambda(x y)+2 n=k+2 n
$$

and for all $i=1,2, \ldots, n$,

$$
\begin{aligned}
& \tilde{\lambda}\left(x_{i}\right)+\tilde{\lambda}\left(y_{i}\right)+\tilde{\lambda}\left(x_{i} y_{i}\right) \\
= & \lambda\left(x_{i}\right)+\left(v+\lambda^{\prime}\left(u_{i}\right)\right)+\left(v+\lambda^{\prime}\left(v_{i}\right)\right) \\
= & k+2 n-(2 v+s+(i-1) m)+k^{\prime}-(2 n+q+(n-i) m)+2 v \\
= & k+2 n,
\end{aligned}
$$

since $k^{\prime}=2 n+q+(n-1) m+s$. Hence $\tilde{\lambda}$ is a super edge-magic total labeling on \tilde{G} and the magic sum is $k+2 n$.

2.2. Generalizations of Baskoro's results

Here we will give a constraint on the constructions using Theorem 2.3. To see the constraint, we first introduce some lemmas.

In [4], one can find the following lemma.
Lemma 2.4 ([4]). For a positive integer $n, n P_{2}$ is edge-magic if and only if n is odd.

Lemma 2.5. For a positive integer $n, n P_{2}$ is super edge-magic if and only if n is odd. Moreover, if n is odd, then there is a super edge-magic total labeling λ such that for all $i, j \in\{1,2, \ldots n\}, \lambda^{-1}(i) \lambda^{-1}(j) \notin E\left(n P_{2}\right)$.

Proof. By Lemma 2.4, if $n P_{2}$ is super edge-magic, then n is odd.
Conversely, suppose that n is odd. Let $n=2 k+1$ for some positive integer k. Let $\left\{x_{i} y_{i} \mid i=1,2, \ldots, n\right\}$ be the set of all edges of $n P_{2}$. Define a map $\lambda^{\prime}: V\left(n P_{2}\right) \rightarrow\{1,2, \ldots, 2 n\}$ by

$$
\lambda^{\prime}\left(x_{i}\right)=i \text { and } \lambda^{\prime}\left(y_{i}\right)= \begin{cases}3 k-\frac{i-5}{2} & \text { if } i=1,3, \ldots, 2 k+1, \\ 4 k-\frac{i-6}{2} & \text { if } i=2,4, \ldots, 2 k .\end{cases}
$$

One can see that λ is a bijection. Observe that the set

$$
\begin{aligned}
S & =\left\{\lambda^{\prime}(x)+\lambda^{\prime}(y) \mid x y \in E\left(n P_{2}\right)\right\} \\
& =\left\{\lambda^{\prime}\left(x_{i}\right)+\lambda^{\prime}\left(y_{i}\right) \mid i=1,2, \ldots, n\right\} \\
& =\{3 k+3,4 k+4,3 k+4,4 k+5, \ldots, 5 k+2,4 k+2,5 k+3,4 k+3\} \\
& =\{3 k+3,3 k+4, \ldots, 4 k+3,4 k+4, \ldots, 5 k+3\} .
\end{aligned}
$$

Thus by Lemma 2.1, λ^{\prime} induces a super edge-magic total labeling λ and hence $n P_{2}$ is super edge-magic and λ is a desired labeling.

Lemma 2.6. For any positive integer $n, n P_{2}$ is ($q, 2$)-super edge-magic. Moreover, there is ($q, 2$)-super edge-magic total labeling λ such that for all $i, j \in$ $\{1,2, \ldots, n\}, \lambda^{-1}(i) \lambda^{-1}(j) \notin E\left(n P_{2}\right)$.
Proof. Let $\left\{x_{i} y_{i} \mid i=1,2, \ldots, n\right\}$ be the set of all edges of $n P_{2}$. Define a map $\lambda^{\prime}: V\left(n P_{2}\right) \rightarrow\{1,2, \ldots, 2 n\}$ by

$$
\lambda^{\prime}\left(x_{i}\right)=i \text { and } \lambda^{\prime}\left(y_{i}\right)=n+i .
$$

Then λ^{\prime} is a bijection and the set

$$
\begin{aligned}
S & =\left\{\lambda^{\prime}(x)+\lambda^{\prime}(y) \mid x y \in E\left(n P_{2}\right)\right\} \\
& =\{n+2, n+4, \ldots, 3 n\} .
\end{aligned}
$$

Since $k=2 n+q+2(n-1)+(n+2)=q+5 n$, the set

$$
S=\{k-(2 n+q), k-(2 n+q+2), \ldots, k-(2 n+q+2(n-1))\} .
$$

Hence λ^{\prime} induces a $(q, 2)$-super edge-magic total labeling λ which we desired.

With Lemmas 2.5, 2.6, and Theorem 2.3, we obtain the following corollary immediately.

Corollary 2.7. Let $a(v, e)$-graph G be super edge-magic with the magic sum k and let $n \in \mathbb{N}$. If $2 v+n+1 \leq k \leq 3 v-n+2$, then a new graph formed from G by attaching exactly $2 n-1$ pendants incident to $2 n-1$ distinct vertices whose labels are $k-2 v+n-2, k-2 v+n-3, \ldots, k-2 v-n$ respectively is super edge-magic total with the magic sum $k+4 n-2$.

Corollary 2.8. Let $a(v, e)$-graph G be super edge-magic with the magic sum k and let $n \in \mathbb{N}$. If $2 v+n+1 \leq k \leq 3 v-n+2$, then a new graph formed from G by attaching exactly n pendants incident to n distinct vertices whose labels are $k-2 v+n-2, k-2 v+n-4, \ldots, k-2 v-n$ respectively is super edge-magic total with the magic sum $k+2 n$.

We can understand Corollary 2.7 as a generalization of Theorem 1.1 and 1.3. We can also understand Corollary 2.8 as a generalization of Theorem 1.2.

Corollaries 2.7 and 2.8 give some types of examples of constructions using Theorem 2.3. So finding another type is a natural problem. We obtain the following proposition which gives some constraint on choosing a positive integer m in Theorem 2.3.

Proposition 2.9. Let m be a positive integer. There is a (q, m)-super edgemagic total labeling λ_{n} on $n P_{2}$ such that for all $i, j \in\{1,2, \ldots, n\}, \lambda_{n}^{-1}(i) \lambda_{n}^{-1}(j)$ $\notin E\left(n P_{2}\right)$, for some positive integer n greater than 1 if and only if $m=1$ or 2 .

Proof. By Lemmas 2.5 and 2.6 , if $m=1$ or 2 , then there is a (q, m)-super edgemagic total labeling which we desired. Suppose that there is a (q, m)-super edge-magic total labeling λ_{n} on $n P_{2}$. Since λ_{n} is a (q, m)-super edge-magic total labeling on $n P_{2}$, the set

$$
\begin{aligned}
S & =\left\{\lambda_{n}(x)+\lambda_{n}(y) \mid x y \in E\left(n P_{2}\right)\right\} \\
& =\{k-(2 n+q), k-(2 n+q+m), \ldots, k-(2 n+q+(n-1) m)\}
\end{aligned}
$$

where $k=2 n+q+(n-1) m+s$ and $s=\min S$. For $i=1,2, \ldots, n$, let x_{i} and y_{i} be the vertices of $n P_{2}$ such that

$$
\lambda_{n}\left(x_{i}\right)+\lambda_{n}\left(y_{i}\right)=k-(2 n+q+(n-i) m) \text { and } \lambda_{n}\left(x_{i}\right) \in\{1,2, \ldots, n\} .
$$

Then
$\lambda_{n}\left(x_{1}\right)+\lambda_{n}\left(y_{1}\right)=k-(2 n+q+(n-1) m)$ and $\lambda_{n}\left(x_{n}\right)+\lambda_{n}\left(y_{n}\right)=k-(2 n+q)$.
Therefore

$$
\left(\lambda_{n}\left(x_{n}\right)+\lambda_{n}\left(y_{n}\right)\right)-\left(\lambda_{n}\left(x_{1}\right)+\lambda_{n}\left(y_{1}\right)\right)=m(n-1) .
$$

On the other hands,

$$
\left(\lambda_{n}\left(x_{n}\right)-\lambda_{n}\left(x_{1}\right)\right)+\left(\lambda_{n}\left(y_{n}\right)-\lambda_{n}\left(y_{1}\right)\right) \leq(n-1)+(n-1)=2(n-1) .
$$

Hence $m \leq 2$.
Remark 2.10. In this remark we use the notations in Theorem 2.3.
(1) For any super edge-magic total labeling λ^{\prime} on $n P_{2}, s$ is a constant since $k^{\prime}=\frac{3(3 n+1)}{2}$. Therefore when we construct a new graph using Theorem 2.3, the vertices incident with new pendants are invariant although the super edgemagic total labeling on $n P_{2}$ is replaced.
(2) For any ($q, 2$)-super edge-magic labeling λ^{\prime} on $n P_{2}$ the sum of all vertex labeling is $1+2+\cdots+n=n(2 n+1)$. On the other hands, the sum of all vertex labeling is

$$
s+(s+2)+(s+4)+\cdots+(s+2(n-1))=n(s+n-1) .
$$

Thus s is a constant $n+2$. Hence when we construct a new graph using Theorem 2.3, the vertices incident with new pendants are invariant although the ($q, 2$)-super edge-magic total labeling on $n P_{2}$ is replaced.

References

[1] E. T. Baskoro, I. W. Sudarsana, and Y. M. Cholily, How to construct new super edgemagic graphs from some old ones, J. Indones. Math. Soc. 11 (2005), no. 2, 155-162.
[2] H. Enomoto, A. Lladó, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), no. 2, 105-109.
[3] R. M. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle, On super edge-magic graphs, Ars Combin. 64 (2002), 81-95.
[4] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
[5] A. M. Marr and W. D. Wallis, Magic Graphs, Second ed., Birkhäuser, Boston, 2012.
[6] I. W. Sudarsana, E. T. Baskoro, D. Ismaimuza, and H. Assiyatun, Creating new super edge-magic total labelings from old ones, J. Combin. Math. Combin. Comput. 55 (2005), 83-90.

Young-Hun Kim
Department of Mathematics
Sogang University
Seoul 121-742, Korea
E-mail address: yhkim14@sogang.ac.kr

[^0]: Received March 2, 2016.
 2010 Mathematics Subject Classification. 05C78.
 Key words and phrases. edge-magic graphs, super edge-magic graphs.
 This research was supported by NRF Grant $\sharp 2015 R 1 D 1 A 1 A 01056670$.

