Commun. Korean Math. Soc. **32** (2017), No. 1, pp. 225–231 https://doi.org/10.4134/CKMS.c160044 pISSN: 1225-1763 / eISSN: 2234-3024

ON CONSTRUCTIONS OF NEW SUPER EDGE-MAGIC GRAPHS FROM SOME OLD ONES BY ATTACHING SOME PENDANTS

Young-Hun Kim

ABSTRACT. Baskoro et al. [1] provided some constructions of new super edge-magic graphs from some old ones by attaching 1, 2, or 3 pendant vertices and edges. In this paper, we introduce (q, m)-super edge-magic total labeling and we give a construction of new super edge-magic graphs by attaching n pendant vertices and edges under some conditions, for any positive integer n. Also, we give a constraint on our construction.

1. Introduction

Throughout this paper, we only consider finite simple graphs. We denote by V(G) and E(G) the set of vertices and the set of edges of a graph G, respectively. And we denote by (v, e)-graph G a graph with v vertices and e edges. For any positive integer k, we denote by P_k the path graph with kvertices. For any graph G and positive integer n, the graph consisting of ndisjoint copies of G will be denoted by nG.

An edge-magic total labeling on a (v, e)-graph G is a bijection $\lambda : V(G) \cup E(G) \to \{1, 2, \dots, v + e\}$ with the property that, given any edge xy,

$$\lambda(x) + \lambda(xy) + \lambda(y) = k$$

for some constant k. Here, k is called the magic sum of G. A graph with an edge-magic total labeling is called *edge-magic*. In particular, if $\lambda(V(G)) = \{1, 2, \ldots, v\}$, then λ is called *super edge-magic total labeling* and a graph with a super edge-magic total labeling is called *super edge-magic*.

In [1], one can find the following construction of new super edge-magic graphs from some old ones by adding 1, 2, or 3 pendants.

Theorem 1.1 ([1]). From any super edge-magic (v, e)-graph G with the magic sum k, we can construct a new super edge-magic total graph from G by adding

 $\odot 2017$ Korean Mathematical Society

Received March 2, 2016.

²⁰¹⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. edge-magic graphs, super edge-magic graphs.

This research was supported by NRF Grant $\sharp 2015 R1D1A1A01056670$.

YOUNG-HUN KIM

one pendant incident to vertex x of G whose label k-2v-1. The magic constant of the new graph is k' = k+2.

Theorem 1.2 ([1]). Let a (v, e)-graph G be super edge-magic total with the magic sum k and $k \ge 2v + 3$. Then, a new graph formed from G by adding exactly two pendants incident to two distinct vertices x and y of G whose labels k - 2v and k - 2v - 2 respectively is super edge-magic total with the magic constant k' = k + 4.

Theorem 1.3 ([1]). Let a (v, e)-graph G be super edge-magic total with the magic sum k and $k \ge 2v + 3$. Then, a new graph formed from G by adding exactly three pendants incident to three distinct vertices x, y and z of G whose labels k - 2v, k - 2v - 1 and k - 2v - 2 respectively is super edge-magic total with the magic constant k' = k + 6.

In this paper we introduce a new notion called by (q, m)-super edge-magic total labeling. Using this notion, we will give a generalized construction of the previous ones. At the last we will give a constraint on choosing a positive integer m in our construction.

2. Main results

2.1. Our construction

In [3], one can find the following lemma which gives a necessary and sufficient condition for a graph being super edge-magic.

Lemma 2.1 ([3]). A (v, e)-graph G is super edge-magic if and only if there exists a bijection $\lambda : V(G) \to \{1, 2, \dots, v\}$ such that the set

$$S = \{\lambda(x) + \lambda(y) \mid xy \in E(G)\}$$

consists of e consecutive integers. In such a case, λ extends to a super edgemagic labeling of G with a magic sum k = v + e + s, where $s = \min S$ and

$$S = \{k - (v+1), k - (v+2), \dots, k - (v+e)\}.$$

Analogously, we define (q, m)-super edge-magic total labeling as following: Let G be a (v, e)-graph, $\mu : V(G) \to \{1, 2, \ldots, v\}$ be a bijection and let q be an indeterminate. Suppose that there is a positive integer m such that

$$S = \{\mu(x) + \mu(y) | xy \in E(G)\}$$

is equal to

$$\{k - (v + q), k - (v + q + m), \dots, k - (v + q + (e - 1)m)\},\$$

where k = v + q + (e - 1)m + s and $s = \min S$. In this case, define a map $\lambda : V(G) \cup E(G) \to \{1, 2, ..., v\} \cup \{v + q, v + q + m, ..., v + q + (e - 1)m\}$ by

$$\left\{ \begin{array}{ll} \lambda(x)=\mu(x) & \text{ for all } x\in V(G),\\ \lambda(xy)=k-(\mu(x)+\mu(y)) & \text{ for all } xy\in E(G). \end{array} \right.$$

Then for all $xy \in E(G)$, $\lambda(x) + \lambda(y) + \lambda(xy) = k$.

Definition. In the previous situations, λ is called a (q, m)-super edge-magic total labeling, G is called a (q, m)-super edge-magic graph and k is called the magic sum of G.

Example 2.2. All super edge-magic graphs are (1, 1)-super edge-magic graphs by Lemma 2.1.

Now, we introduce a generalized construction of the constructions induced by Theorems 1.1, 1.2, and 1.3.

Theorem 2.3. Let G be a super edge-magic (v, e)-graph and λ be a super edge-magic total labeling with the magic sum k. Suppose that for fixed positive integers m and n, there is a (q, m)-super edge-magic total labeling λ' on nP_2 with the magic sum k'. If for all $i, j \in \{1, 2, ..., n\}$, $\lambda'^{-1}(i)\lambda'^{-1}(j) \notin E(nP_2)$ and

$$2v + s + (n - 1)m - 2n + 1 \le k \le 3v + s - 2n,$$

where $s = \min \{\lambda'(u) + \lambda'(v) | uv \in E(nP_2)\}$, then a new graph \tilde{G} formed from G by adding exactly n pendants incident to n distinct vertices whose labels are

 $k + 2n - (2v + s), k + 2n - (2v + s + m), \dots, k + 2n - (2v + s + (n - 1)m),$

respectively is super edge-magic. Moreover, there is a super edge-magic total labeling on \tilde{G} with the magic sum k + 2n.

Proof. The hypothesis

$$2v + s + (n-1)m - 2n + 1 \le k \le 3v + s - 2n$$

implies that

$$k + 2n - (2v + s + (n - 1)m) \ge 1$$
 and $k + 2n - (2v + s) \le v$.

So $k + 2n - (2v + s), k + 2n - (2v + s + m), \dots, k + 2n - (2v + s + (n - 1)m)$ are vertex labels of G.

Since λ' is a (q, m)-super edge-magic total labeling on nP_2 , the set

$$S' = \{\lambda'(x) + \lambda'(y) \mid xy \in E(nP_2)\}\$$

= $\{k' - (2n+q), k' - (2n+q+m), \dots, k' - (2n+q+(e-1)m)\}.$

For i = 1, 2, ..., n, let u_i and v_i be the vertices of nP_2 such that

$$\lambda'(u_i) + \lambda'(v_i) = k' - (2n + q + (n - i)m) \text{ and } \lambda'(u_i) \in \{1, 2, \dots, n\}.$$

Since for all $i, j \in \{1, 2, \ldots, n\}$, $\lambda'^{-1}(i)\lambda'^{-1}(j) \notin E(nP_2)$, u_1, u_2, \ldots, u_n , v_1, v_2, \ldots, v_n are 2n distinct vertices of nP_2 .

Let x_1, x_2, \ldots, x_n be vertices of G such that

$$\lambda(x_i) = k + 2n - (2v + s + (i - 1)m)$$

for each i = 1, 2, ..., n. Also, let $y_1, y_2, ..., y_n$ be attached pendant vertices of \tilde{G} incident to $x_1, x_2, ..., x_n$, respectively. Define a map $\tilde{\lambda} : V(\tilde{G}) \cup E(\tilde{G}) \to$

 $\{1, 2, \dots, v + e + 2n\}$ by

$$\begin{cases} \tilde{\lambda}(x) = \lambda(x) & \text{for all } x \in V(G), \\ \tilde{\lambda}(y_i) = v + \lambda'(u_i) & \text{for all } i = 1, 2, \dots, n, \\ \tilde{\lambda}(xy) = \lambda(xy) + 2n & \text{for all } xy \in E(G), \\ \tilde{\lambda}(x_iy_i) = v + \lambda'(v_i) & \text{for all } i = 1, 2, \dots, n. \end{cases}$$

Then for all $xy \in E(G)$,

$$\tilde{\lambda}(x) + \tilde{\lambda}(y) + \tilde{\lambda}(xy) = \lambda(x) + \lambda(y) + \lambda(xy) + 2n = k + 2n$$

and for all i = 1, 2, ..., n,

$$\begin{split} \tilde{\lambda}(x_i) &+ \tilde{\lambda}(y_i) + \tilde{\lambda}(x_i y_i) \\ &= \lambda(x_i) + (v + \lambda'(u_i)) + (v + \lambda'(v_i)) \\ &= k + 2n - (2v + s + (i - 1)m) + k' - (2n + q + (n - i)m) + 2v \\ &= k + 2n, \end{split}$$

since k' = 2n + q + (n-1)m + s. Hence $\tilde{\lambda}$ is a super edge-magic total labeling on \tilde{G} and the magic sum is k + 2n.

2.2. Generalizations of Baskoro's results

Here we will give a constraint on the constructions using Theorem 2.3. To see the constraint, we first introduce some lemmas.

In [4], one can find the following lemma.

Lemma 2.4 ([4]). For a positive integer n, nP_2 is edge-magic if and only if n is odd.

Lemma 2.5. For a positive integer n, nP_2 is super edge-magic if and only if n is odd. Moreover, if n is odd, then there is a super edge-magic total labeling λ such that for all $i, j \in \{1, 2, ..., n\}, \lambda^{-1}(i)\lambda^{-1}(j) \notin E(nP_2)$.

Proof. By Lemma 2.4, if nP_2 is super edge-magic, then n is odd.

Conversely, suppose that n is odd. Let n = 2k + 1 for some positive integer k. Let $\{x_i y_i | i = 1, 2, ..., n\}$ be the set of all edges of nP_2 . Define a map $\lambda' : V(nP_2) \to \{1, 2, ..., 2n\}$ by

$$\lambda'(x_i) = i \text{ and } \lambda'(y_i) = \begin{cases} 3k - \frac{i-5}{2} & \text{if } i = 1, 3, \dots, 2k+1, \\ 4k - \frac{i-6}{2} & \text{if } i = 2, 4, \dots, 2k. \end{cases}$$

One can see that λ is a bijection. Observe that the set

$$S = \{\lambda'(x) + \lambda'(y) | xy \in E(nP_2)\}$$

= $\{\lambda'(x_i) + \lambda'(y_i) | i = 1, 2, ..., n\}$
= $\{3k + 3, 4k + 4, 3k + 4, 4k + 5, ..., 5k + 2, 4k + 2, 5k + 3, 4k + 3\}$
= $\{3k + 3, 3k + 4, ..., 4k + 3, 4k + 4, ..., 5k + 3\}.$

Thus by Lemma 2.1, λ' induces a super edge-magic total labeling λ and hence nP_2 is super edge-magic and λ is a desired labeling.

Lemma 2.6. For any positive integer n, nP_2 is (q, 2)-super edge-magic. Moreover, there is (q, 2)-super edge-magic total labeling λ such that for all $i, j \in \{1, 2, ..., n\}$, $\lambda^{-1}(i)\lambda^{-1}(j) \notin E(nP_2)$.

Proof. Let $\{x_i y_i | i = 1, 2, ..., n\}$ be the set of all edges of nP_2 . Define a map $\lambda' : V(nP_2) \to \{1, 2, ..., 2n\}$ by

$$\lambda'(x_i) = i \text{ and } \lambda'(y_i) = n + i.$$

Then λ' is a bijection and the set

$$S = \{\lambda'(x) + \lambda'(y) \mid xy \in E(nP_2)\} \\ = \{n+2, n+4, \dots, 3n\}.$$

Since k = 2n + q + 2(n - 1) + (n + 2) = q + 5n, the set

$$S = \{k - (2n + q), k - (2n + q + 2), \dots, k - (2n + q + 2(n - 1))\}.$$

Hence λ' induces a (q, 2)-super edge-magic total labeling λ which we desired.

With Lemmas 2.5, 2.6, and Theorem 2.3, we obtain the following corollary immediately.

Corollary 2.7. Let a (v, e)-graph G be super edge-magic with the magic sum k and let $n \in \mathbb{N}$. If $2v + n + 1 \le k \le 3v - n + 2$, then a new graph formed from G by attaching exactly 2n - 1 pendants incident to 2n - 1 distinct vertices whose labels are $k - 2v + n - 2, k - 2v + n - 3, \ldots, k - 2v - n$ respectively is super edge-magic total with the magic sum k + 4n - 2.

Corollary 2.8. Let a (v, e)-graph G be super edge-magic with the magic sum k and let $n \in \mathbb{N}$. If $2v + n + 1 \le k \le 3v - n + 2$, then a new graph formed from G by attaching exactly n pendants incident to n distinct vertices whose labels are $k - 2v + n - 2, k - 2v + n - 4, \ldots, k - 2v - n$ respectively is super edge-magic total with the magic sum k + 2n.

We can understand Corollary 2.7 as a generalization of Theorem 1.1 and 1.3. We can also understand Corollary 2.8 as a generalization of Theorem 1.2.

Corollaries 2.7 and 2.8 give some types of examples of constructions using Theorem 2.3. So finding another type is a natural problem. We obtain the following proposition which gives some constraint on choosing a positive integer m in Theorem 2.3.

Proposition 2.9. Let *m* be a positive integer. There is a (q, m)-super edgemagic total labeling λ_n on nP_2 such that for all $i, j \in \{1, 2, ..., n\}$, $\lambda_n^{-1}(i)\lambda_n^{-1}(j) \notin E(nP_2)$, for some positive integer *n* greater than 1 if and only if m = 1 or 2.

Proof. By Lemmas 2.5 and 2.6, if m = 1 or 2, then there is a (q, m)-super edgemagic total labeling which we desired. Suppose that there is a (q, m)-super edge-magic total labeling λ_n on nP_2 . Since λ_n is a (q, m)-super edge-magic total labeling on nP_2 , the set

$$S = \{\lambda_n(x) + \lambda_n(y) \mid xy \in E(nP_2)\}\$$

= $\{k - (2n+q), k - (2n+q+m), \dots, k - (2n+q+(n-1)m)\},\$

where k = 2n + q + (n-1)m + s and $s = \min S$. For $i = 1, 2, \ldots, n$, let x_i and y_i be the vertices of nP_2 such that

$$\lambda_n(x_i) + \lambda_n(y_i) = k - (2n + q + (n - i)m) \text{ and } \lambda_n(x_i) \in \{1, 2, \dots, n\}.$$

Then

 $\lambda_n(x_1) + \lambda_n(y_1) = k - (2n + q + (n - 1)m) \text{ and } \lambda_n(x_n) + \lambda_n(y_n) = k - (2n + q).$ Therefore

$$(\lambda_n(x_n) + \lambda_n(y_n)) - (\lambda_n(x_1) + \lambda_n(y_1)) = m(n-1).$$

On the other hands,

$$(\lambda_n(x_n) - \lambda_n(x_1)) + (\lambda_n(y_n) - \lambda_n(y_1)) \le (n-1) + (n-1) = 2(n-1).$$

ince $m \le 2$.

Hence $m \leq 2$.

Remark 2.10. In this remark we use the notations in Theorem 2.3.

(1) For any super edge-magic total labeling λ' on nP_2 , s is a constant since $k' = \frac{3(3n+1)}{2}$. Therefore when we construct a new graph using Theorem 2.3, the vertices incident with new pendants are invariant although the super edgemagic total labeling on nP_2 is replaced.

(2) For any (q, 2)-super edge-magic labeling λ' on nP_2 the sum of all vertex labeling is $1 + 2 + \cdots + n = n(2n + 1)$. On the other hands, the sum of all vertex labeling is

$$s + (s + 2) + (s + 4) + \dots + (s + 2(n - 1)) = n(s + n - 1).$$

Thus s is a constant n + 2. Hence when we construct a new graph using Theorem 2.3, the vertices incident with new pendants are invariant although the (q, 2)-super edge-magic total labeling on nP_2 is replaced.

References

- [1] E. T. Baskoro, I. W. Sudarsana, and Y. M. Cholily, How to construct new super edgemagic graphs from some old ones, J. Indones. Math. Soc. 11 (2005), no. 2, 155-162.
- [2] H. Enomoto, A. Lladó, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), no. 2, 105-109.
- [3] R. M. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle, On super edge-magic graphs, Ars Combin. 64 (2002), 81-95.
- [4] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451 - 461.
- [5] A. M. Marr and W. D. Wallis, Magic Graphs, Second ed., Birkhäuser, Boston, 2012.

[6] I. W. Sudarsana, E. T. Baskoro, D. Ismaimuza, and H. Assiyatun, Creating new super edge-magic total labelings from old ones, J. Combin. Math. Combin. Comput. 55 (2005), 83–90.

Young-Hun Kim Department of Mathematics Sogang University Seoul 121-742, Korea *E-mail address*: yhkim14@sogang.ac.kr