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MORE ON MAXIMAL, MINIMAL OPEN AND CLOSED SETS

Ajoy Mukharjee

Abstract. In this paper, we introduce a notion of cleanly covered topo-
logical spaces along with two strong separation axioms. Some properties
of cleanly covered topological spaces are obtained in term of maximal open
sets including some similar properties of a topological space in term of
maximal closed sets. Two strong separation axioms are also investigated
in terms of minimal open and maximal closed sets.

1. Introduction

A field of study remains vivid and investigative till new contributions to
the theory of the field are remain to add constantly. General topology is an
example of such a field and its theory are enriching day by day by adding many
new contributions from various directions. Following such trends of adding
new contributions to general topology, Nakaoka and Oda [3] introduced and
studied the concept of minimal open sets in a topological space. Dualizing the
concept of minimal open sets, Nakaoka and Oda [4] introduced and studied
the idea of maximal open sets. Thereafter, as consequences of maximal and
minimal open sets, Nakaoka and Oda [5] introduced and studied notions of
maximal and minimal closed sets. Nakaoka and Oda [5], also obtained some
interrelations among four concepts: maximal open sets, minimal open sets,
maximal closed sets, minimal closed sets. Several authors have carried out
investigations on the notions of maximal and minimal open and closed sets
from various directions. The author of the present paper in [2] also obtained
some conditions for disconnectedness in terms of maximal and minimal open
sets and observed that if a topological space has a set of double nature such as
a set which is both maximal open and minimal open, then the space may be
disconnected.

We simply write X to denote the topological space (X,T ). Let U be a
collection of open sets of a topological space X . It is trivial that U is an open
cover of X , if X ∈ U . Consideration of such trivial open covers of a topological
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space X are meaningless from the view of covering properties of a topological
space, specially when we need to consider finitely many open sets in an open
cover of the topological space X . So throughout the paper, by an open cover
of X , we mean only nontrivial open cover U of X . This means that if U is an
open cover of X , then G 6= X for each G ∈ U . We note that in an open cover
of X , there exist at least two open sets.

For a subset A of a topological space (X,T ), Cl(A) denotes the closure of
A with respect to the topological space (X,T ). By a proper open set of a
topological space X , we mean an open set G 6= ∅, X and by a proper closed set,
we mean a closed set E 6= ∅, X . For a topological space (X,T ) and A ⊂ X , we
write (A,TA) to denote the subspace on A of (X,T ). Throughout the paper,
R denotes the set of real numbers.

2. Maximal and minimal open and closed sets

We recall some definitions and results to use in the sequel.

Definition 2.1 (Nakaoka and Oda [4]). A proper open set U of X is said to
be a maximal open set if any open set which contains U is X or U .

Theorem 2.2 (Nakaoka and Oda [4]). If U is a maximal open set and W is

an open set, then either U ∪W = X or W ⊂ U . If W is a maximal open set

distinct from U , then U ∪W = X.

Definition 2.3 (Nakaoka and Oda [3]). A proper open set U of X is said to
be a minimal open set if any open set which is contained in U is U or ∅.

Theorem 2.4 (Nakaoka and Oda [3]). If U is a minimal open set and W is

an open set, then either U ∩ W = ∅ or U ⊂ W . If W is a minimal open set

distinct from U , then U ∩W = ∅.

Definition 2.5 (Howard and Tachtsis [1]). A cover U of X is said to be a
minimal cover if for any U ∈ U , U −{U} is not a cover of X . U is said to be a
minimal open (resp. closed) cover if each member of U is open (resp. closed).

If U is a minimal open cover of X , then there do not exist distinct U, V ∈ U

such that V ⊂ U . Also if an open cover U of X consists of two distinct open
sets U, V such that V ⊂ U , then U is not a minimal open cover of X . Each
minimal open cover of a compact space is finite and each open cover of a
compact space has a finite minimal open cover.

Definition 2.6. A cover U of X is said to be disconnected if for each U ∈ U ,
there exists a V ∈ U such that U ∩ V = ∅.

Theorem 2.7. A minimal open cover consists of a minimal open set is dis-

connected.

Proof. Let U be a minimal open cover of X and let U ∈ U be a minimal open
set. Since U is a proper open set and U is a cover of X , there exists at least
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one more element V ∈ U . By Theorem 2.4, we have U ∩ V = ∅ or U $ V . U

being a minimal open cover, U $ V is not possible. �

Corollary 2.8. A minimal open cover consists of only minimal open sets is

disconnected.

The following definition is due to the requirement of at least two proper
open sets in an open cover of a topological space.

Definition 2.9. A topological space X is said to be cleanly covered if each
open cover of X has a minimal open cover consisting of exactly two open sets.

So a cleanly covered topological space is a compact space. It is very easy to
see that a compact space may not be a cleanly covered space.

Example 2.10 (Steen and Seebach [6], p. 77). Let X = [−1, 1] and T is the
topology generated by the subbase {∅} ∪ {[−1, b) | b > 0} ∪ {(a, 1] | a < 0}.
Then any open cover of (X,T ) consists of two sets G,H such that 1 ∈ G,
−1 ∈ H and G ∪ H = X . So (X,T ) is cleanly covered. Note that the space
consists of no maximal open as well as minimal open set.

Example 2.11 (Steen and Seebach [6], p. 48). Let X = [−1, 1] and T = {G |
(−1, 1) ⊂ G} ∪ {G ⊂ X | 0 6∈ G}. The topological space (X,T ) is compact
but the space is not cleanly covered. It is interested to note that the space has
uncountably many minimal open sets, and only two maximal open sets [−1, 1)
and (−1, 1].

Theorem 2.12. If each open cover of X contains a maximal open set, then X
is cleanly covered.

Proof. Let U be an open cover of X and G ∈ U be a maximal open set. If
H ∈ U is another maximal open set distinct from G, then we have G∪H = X
by Theorem 2.2. So {G,H} constitutes subcover of U for X . Let G be the
only maximal open set in U . G being a proper open set, there exists at least
one more open set H ∈ U distinct from G to cover X . If H = X , then U is
a trivial open cover of X . So we suppose that H 6= X . By Theorem 2.2, we
have H $ G or H ∪G = X . If for all U ∈ U , we have U $ G, then U can not
become an open cover of X . So it follows that there exists an open set H ∈ U

distinct from G such that G ∪H = X . �

Recall that a collection U of subsets of X is called locally finite if each
x ∈ X has a neighborhood meeting only finitely many members of U . Also
if {Uλ | λ ∈ Λ} is a locally finite collection of sets in X , then Cl(

⋃

λ∈ΛUλ) =
⋃

λ∈ΛCl(Uλ).
Due to Nakaoka and Oda [3], a topological space X is a locally finite space

if for each x ∈ X , there exists a finite open set U such that x ∈ U .

Theorem 2.13. If {Uλ | λ ∈ Λ} is a collection of distinct minimal open sets

in a locally finite space X, then Cl(
⋃

λ∈ΛUλ) =
⋃

λ∈ΛCl(Uλ).
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Proof. Since Uλ is minimal open for each λ ∈ Λ, we have Uλ1
∩ Uλ2

= ∅ for
λ1, λ2 ∈ Λ with λ1 6= λ2. For each x ∈ X , there exists a finite open set U such
that x ∈ U . Since U is a finite open set and Uλ1

∩ Uλ2
= ∅ for λ1, λ2 ∈ Λ

with λ1 6= λ2, U intersects only finitely many members of {Uλ | λ ∈ Λ}. So
{Uλ | λ ∈ Λ} is locally finite and hence the result follows. �

Definition 2.14 (Nakaoka and Oda [5]). A proper closed set E of X is said
to be a minimal closed set if any closed set which is contained in E is E or ∅.

Theorem 2.15 (Nakaoka and Oda [5]). If E is a minimal closed set and F is

any closed set, then either E ∩ F = ∅ or E ⊂ F .

Definition 2.16 (Nakaoka and Oda [5]). A proper closed set E of X is said
to be a maximal closed set if any closed set which contains E is X or E.

Theorem 2.17 (Nakaoka and Oda [5]). If E is a maximal closed set and F is

any closed set, then either E ∪ F = X or F ⊂ E.

Analogous to Theorem 2.7, Corollary 2.8, Theorem 2.12 and Theorem 2.13,
we have Theorem 2.18, Corollary 2.19, Theorem 2.20 and Theorem 2.21 re-
spectively. The proofs of them are omitted as proofs are very much similar to
corresponding results already established.

Theorem 2.18. A minimal closed cover consists of a minimal closed set is

disconnected.

Corollary 2.19. A minimal closed cover consists of only minimal closed sets

is disconnected.

Theorem 2.20. If each closed cover F of X contains a maximal closed set

E, then there exists an F ∈ F such that E ∪ F = X.

Theorem 2.21. If {Uλ | λ ∈ Λ} is a collection of distinct minimal closed sets

in a locally finite space X, then Cl(
⋃

λ∈ΛUλ) =
⋃

λ∈ΛUλ.

Theorem 2.22. Let A,E be closed sets in X such that A∩E 6= ∅. Then A∩E
is a minimal closed set in (A,TA) if E is a minimal closed set in (X,T ).

Proof. Similar to the proof of Theorem 3.14 [2]. �

3. Two strong separation axioms

We note that if there exist two minimal open sets U, V in a topological space
X , then U∩V = ∅ [3]. This observation motivates us to introduce the following
two strong separation axioms.

Definition 3.1. A topological space X is said to be strongly regular if for each
x ∈ X and each closed set F with x /∈ F , there exist distinct minimal open
sets U, V such that x ∈ U and F ⊂ V .

Clearly, a strongly regular topological space is regular.
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Definition 3.2. A topological space X is said to be strongly normal if for
each pair of disjoint closed sets E,F , there exist distinct minimal open sets
U, V such that E ⊂ U and F ⊂ V .

Let T be the topology on R generated by a basis to be form by the family
{[a, b) | a, b ∈ R}. The right half-open interval topological space (R,T ) is
both regular and normal. But the space is neither strongly regular nor strongly
normal. So we conclude that a regular (resp. normal) topological space may
not be a strongly regular (resp. strongly normal) space.

For a subset A of a topological space X , we define

MinInt(A) =

{

∅ if A contains no minimal open set
⋃

{G | G is a minimal open set contained in A},

and

MaxCl(A) =

{

X if A contained in no maximal closed set
⋂

{E | E is a maximal closed set containing A}.

It follows that if G is a minimal open set, then MinInt(G) = G and if E is
a maximal closed set, then MaxCl(E) = E. If G,H are two distinct minimal
open sets, then G,H are proper open sets distinct from G ∪H and contained
in G ∪H which means that G ∪H is not a minimal open set. So we conclude
that the union of even finitely many distinct minimal open sets is not minimal
open. Again if E,F are two distinct maximal closed sets, then E,F are proper
closed sets distinct from E ∩ F and contain E ∩ F which means that E ∩ F is
not a maximal closed set. So we conclude that the intersection of even finitely
many distinct maximal closed sets is not maximal closed. Thus it follows that
MinInt(A) (resp. MaxCl(A)) may not be minimal open (resp. maximal
closed).

Example 3.3 (Mukharjee [2]). For a ∈ R, we define

T = {∅, R, {a}, (−∞, a), (−∞, a], [a,∞)}.

For b ∈ R with a < b, we have MinInt((−∞, b)) = (−∞, a] which is not a
minimal open set and MaxCl((b,∞)) = (a,∞) which is not a maximal closed
set.

The following two are duality principle due to Nakaoka and Oda [5]:

(i) F is minimal closed in X if and only if X − F is maximal open in X .
(ii) F is maximal closed in X if and only if X − F is minimal open in X .

Theorem 3.4. For a subset A of X, X −MinInt(A) = MaxCl(X −A).

Proof. Firstly, suppose that MinInt(A) = ∅. This means that A contains no
minimal open set. If possible, suppose that X − A contains a maximal closed
set E. Then X − E is a minimal open set contained in A, a contradiction. So
in this case we have X −MinInt(A) = MaxCl(X −A). Now suppose that A
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contains a minimal open set G. Then X−A ⊂ X−G. Also X−G is a maximal
closed set. So we get MaxCl(X −A) 6= X if and only if MinInt(A) 6= ∅. It is
easy to see that if {G} is the collection of all minimal open sets contained in
A, then {X −G} is the collection of all maximal closed sets containing X −A
and vice-versa. So we have

X −MinInt(A) = X −
⋃

{G | G is minimal open contained in A}

=
⋂

{X −G | X −G is maximal closed containing X −A}

= MaxCl(X −A). �

Theorem 3.5. For a subset A of X, MinInt(A) is minimal open if and only

if A contains one and only one minimal open set.

Proof. The sufficiency follows easily. Let MinInt(A) be minimal open and A
contain two minimal open sets G,H . Then MinInt(A) = G ∪ H ⊂ A. Since
G,H ⊂ G ∪ H and MinInt(A) is minimal open, we have G = G ∪ H and
H = G ∪ H . G = G ∪ H implies that H ⊂ G and H = G ∪ H implies that
G ⊂ H . So we have G = H . �

Theorem 3.6 is a dual of Theorem 3.5. The proof of the theorem is omitted as
the proof is similar to that of Theorem 3.5.

Theorem 3.6. For a subset A of X, MaxCl(A) is maximal closed if and only

if A contained in one and only maximal closed set.

Theorem 3.7. A topological space X is strongly regular if and only if for each

open set G and each x ∈ G, there exist a minimal open set U and a maximal

closed set E such that x ∈ U ⊂ MaxCl(U) ⊂ E ⊂ G.

Proof. Firstly, let X be a strongly regular topological space and G be an open
set. For x ∈ G, we obtain by strong regularity of X two distinct minimal
open sets U, V such that x ∈ U,X − G ⊂ V . U, V being distinct minimal
open sets, we have U ∩ V = ∅. Now U ∩ V = ∅ ⇒ U ⊂ X − V . Since V is
minimal open, X−V is maximal closed and so MaxCl(X−V ) = X−V . Thus
MaxCl(U) ⊂ MaxCl(X −V ) = X −V ⊂ G. Putting E = X −V , we see that
E is maximal closed and x ∈ U ⊂ MaxCl(U) ⊂ E ⊂ G.

Conversely, let E be a closed set and x ∈ X such that x /∈ E. As X − E is
an open set with x ∈ X −E, there exist a minimal open set U and a maximal
closed set F such that x ∈ U ⊂ MaxCl(U) ⊂ F ⊂ X−E. We put V = X−F .
Then V is minimal open with E ⊂ V and U ∩ V = ∅. �

Theorem 3.8. A topological space X is strongly normal if and only if for a

closed set E and for an open set G with E ⊂ G, there exist a minimal open set

U and a maximal closed set F such that E ⊂ U ⊂ MaxCl(U) ⊂ F ⊂ G.

Proof. Similar to the proof of Theorem 3.7. �
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