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VARIOUS CENTROIDS OF POLYGONS AND SOME

CHARACTERIZATIONS OF RHOMBI

Dong-Soo Kim, Wonyong Kim, Kwang Seuk Lee, and Dae Won Yoon

Abstract. For a polygon P , we consider the centroid G0 of the vertices
of P , the centroid G1 of the edges of P and the centroid G2 of the interior
of P . When P is a triangle, (1) we always have G0 = G2 and (2) P

satisfies G1 = G2 if and only if it is equilateral. For a quadrangle P , one
of G0 = G2 and G0 = G1 implies that P is a parallelogram.

In this paper, we investigate the relationships between centroids of
quadrangles. As a result, we establish some characterizations for rhombi
and show that among convex quadrangles whose two diagonals are per-

pendicular to each other, rhombi and kites are the only ones satisfying
G1 = G2. Furthermore, we completely classify such quadrangles.

1. Introduction

Let us denote by P a polygon in the plane R2 and we consider the centroid
(or center of mass, or center of gravity, or barycenter) G2 of the interior of P ,
the centroid G1 of the edges of P and the centroid G0 of the vertices of P . The
centroid G1 of the edges of P is also called the perimeter centroid of P ([3]).

When P is a triangle, then the centroid G1 coincides with the center of
the Spieker circle, which is the incircle of the triangle formed by connecting
midpoint of each side of the original triangle P ([2, p. 249]). In this case, the
centroid G0 always coincides with the centroid G2(= G), where G = (A+B +
C)/3. Furthermore, the perimeter centroid G1 of P satisfies G1 = G2 if and
only if the triangle P is equilateral ([14, Theorem 2]).

For a quadrangle, we have the following ([11]).

Proposition 1.1. Let P denote a quadrangle. Then the following are equiva-

lent.

(1) P satisfies G0 = G1.

(2) P satisfies G0 = G2.
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(3) P is a parallelogram.

In order to study the relationships between the centroid G1 and the centroid
G2 of a convex quadrangle, for the intersection point M of the two diagonals
AC and BD we define as follows:

(1.1) △ABM = m1, △BCM = m2, △CDM = m3, △DAM = m4.

The perimeter l and the area m of the convex quadrangle ABCD are respec-
tively given by

(1.2) l = l1 + l2 + l3 + l4

and

(1.3) m = m1 +m2 +m3 +m4,

where we put as follows:

(1.4) AB = l1, BC = l2, CD = l3, DA = l4.

In [11], for convex quadrangles satisfying G1 = G2 a characterization theo-
rem was established as follows.

Proposition 1.2. Let us denote by P a convex quadrangle ABCD. Then the

following are equivalent.

(1) P satisfies G1 = G2.

(2) P satisfies both

(1.5) l(m3 +m4) = m{3(l3 + l4)− l}

and

(1.6) l(m1 +m4) = m{3(l1 + l4)− l}.

Furthermore, there exist some examples of quadrangles which are not par-
allelograms but satisfy G1 = G2 as follows ([11]).

Example 1.3. We consider the four points in the plane R2 defined by

(1.7) A(x, 0), B(0, 1), C(−1, 0), D(0,−1).

We denote by P (x) the quadrangle ABCD. Then there exist two real numbers
a1 ∈ (0, 1) and a2 ∈ (−∞,−2) such that P (a1) and P (a2) satisfy G1 = G2.

Hence, it is quite natural to ask the following (Question D of [11]):

Which quadrangles satisfy the condition G1 = G2?

The convex quadrangle P (a1) in Example 1.3 is a kite, which is a convex
quadrangle whose four sides can be grouped into two pairs of equal-length sides
that are adjacent to each other. Note that a convex quadrangle is a kite if and
only if one diagonal is the perpendicular bisector of the other diagonal.

In this paper, we investigate the various centroids of the convex quadrangles
whose two diagonals are perpendicular to each other and completely answer
the above question for such quadrangles.
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First of all, in Section 2 we establish the characterization theorem for rhombi
as follows. Note that a rhombus is a simple (non-self-intersecting) quadrangle
all of whose four sides have the same length.

Theorem 1.4. Suppose that P denotes a convex quadrangle whose two diago-

nals are perpendicular to each other. We denote by O the intersection point of

diagonals of P . Then the following are equivalent.

(1) P satisfies G0 = O.
(2) P satisfies G1 = O.
(3) P satisfies G2 = O.
(4) P is a rhombus.

Finally, in Section 3, using a series of lemmas we prove the following.

Theorem 1.5. Suppose that P denotes a convex quadrangle whose two diago-

nals are perpendicular to each other. We denote by O the intersection point of

diagonals of P . Then we have the following.

(1) P satisfies G1 = G2(= O) if and only if P is a rhombus.

(2) If P satisfies G1 = G2(6= O), then P is a kite.

In Section 4, conversely, we completely classify the kites satisfying G1 = G2.
In order to find the centroid G2 of polygons, see [4]. In [13], mathematical

definitions of centroid G2 of planar bounded domains were given. For higher
dimensions, it was shown that the centroid G0 of the vertices of a simplex in
an n-dimensional space always coincides with the centroid Gn of the simplex
([1, 14]).

Archimedes proved the area properties of parabolic sections and then for-
mulated the centroid of parabolic sections ([15]). Some characterizations of
parabolas using these properties were given in [6, 9, 10]. Furthermore,
Archimedes also proved the volume properties of the region surrounded by
a paraboloid of rotation and a plane ([15]). For characterizations of ellipsoids,
elliptic paraboloid or elliptic hyperboloids with respect to these volume prop-
erties, we refer [5, 7, 8, 12].

2. Preliminaries and proof of Theorem 1.4

In this section, first of all we recall the centroids of a quadrangle. For
centroids of a quadrangle ABCD, we have the following, where we use the
notations given in Section 1.

Proposition 2.1. Let us denote by P the convex quadrangle ABCD. Then

we have the following.

(1) The centroid G0 of P is given by

(2.1) G0 =
A+B + C +D

4
.



138 D.-S. KIM, W. KIM, K. S. LEE, AND D. W. YOON

(2) The centroid G1 of P is given by

(2.2) G1 =
(l4 + l1)A+ (l1 + l2)B + (l2 + l3)C + (l3 + l4)D

2l
.

(3) If m = δ + β, where δ = △ABC and β = △ACD, then the centroid

G2 of P is given by

(2.3) G2 =
mA+ δB +mC + βD

3m
.

Proof. It is straightforward to prove (1), (2) and (3) or see [4, 11]. �

Now, we prove Theorem 1.4 stated in Section 1.
Suppose that P denotes a convex quadrangle whose two diagonals are per-

pendicular to each other. We denote by O the intersection point of diagonals of
P . Let us put by A the vertex which is closest to the point O. By a similarity
transformation if necessary, we may introduce a coordinate system so that the
point O is the origin and the vertices of P are given by

(2.4) A(1, 0), B(0, s), C(−t, 0), D(0,−u),

where s, t and u are positive real numbers with s ≥ u ≥ 1, t ≥ 1.
The centroids of P are given by

(2.5)
G0 =

1

4
(1− t, s− u), G2 =

1

3
(1− t, s− u),

G1 =
1

2l
(l1 + l4 − tl2 − tl3, sl1 + sl2 − ul3 − ul4),

where we put

(2.6) l1 =
√

s2 + 1, l2 =
√

s2 + t2, l3 =
√

t2 + u2, l4 =
√

u2 + 1.

It follows from (2.5) that each of (1) and (3) in Theorem 1.4 implies (4).
Now, suppose that P satisfies G1 = O. Then from (2.5) we get

(2.7) l1 + l4 = t(l2 + l3), s(l1 + l2) = u(l3 + l4).

Since the two diagonals are perpendicular, we have l21 + l23 = l22 + l24, and hence
we obtain the following.

(2.8)
l21 − l22 = l24 − l23,

l21 − l24 = l22 − l23.

It follows from (2.7) and (2.8) that

(2.9) t(l1 − l4) = l2 − l3,
s

u
(l4 − l3) = l1 − l2.

Combining (2.7) and (2.9), we get

(2.10)
(t+

1

t
)l1 − (t−

1

t
)l4 = 2l2,

(
s

u
−
u

s
)l2 + (

s

u
+
u

s
)l1 = 2l4.
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By eliminating l4 in (2.10), we find
(2.11)

{(s− u)t+ (s+ u)}[{(u− s)t+ (u + s)}l1 − {(u+ s)t+ (u − s)}l2] = 0.

Since (s− u)t+ (s+ u) > 0, (2.11) yields

(2.12) {(u− s)t+ (u + s)}l1 = {(u+ s)t+ (u − s)}l2.

By replacing l1 and l2 in (2.12) with those in (2.6), we get

(2.13) (t2 − 1){(u+ s)2t2 + 2(u2 − s2)t+ 4us3 + (u+ s)2} = 0.

The discriminant D of the quadratic polynomial in the parenthesis in (2.13)
is given by

(2.14) D/4 = −4(u+ s)2us(1 + s2) < 0.

Hence, (2.13) shows that t = 1. Thus, we have from (2.6)

(2.15) l1 = l2 =
√

s2 + 1, l3 = l4 =
√

u2 + 1.

Therefore, the second equation of (2.7) implies

(2.16) (s2 − u2)(s2 + u2 + 1) = 0,

which leads s = u. Hence we see that the quadrangle P is a rhombus. This
completes the proof of (2) ⇒ (4) in Theorem 1.4.

Conversely, it is obvious that a rhombus P satisfies G0 = G1 = G2 = O,
where O denotes the intersection point of diagonals of P . This completes the
proof of Theorem 1.4.

3. Proof of Theorem 1.5

In this section, we prove Theorem 1.5 stated in Section 1.
Suppose that P denotes a convex quadrangle whose two diagonals are per-

pendicular to each other. We denote by O the intersection point of diagonals
of P . Let us put by A the vertex which is closest to the point O. As in Section
2, we may introduce a coordinate system so that the point O is the origin and
the vertices of P are given by

(3.1) A(1, 0), B(0, s), C(−t, 0), D(0,−u),

where s, t and u are positive real numbers with s ≥ u ≥ 1, t ≥ 1. Note that P
is a rhombus if t = 1 and s = u, and P is a kite if t = 1 or s = u.

The centroids of P are given by

(3.2)
G2 =

1

3
(1− t, s− u),

G1 =
1

2l
(l1 + l4 − tl2 − tl3, sl1 + sl2 − ul3 − ul4),

where we put

(3.3) l1 =
√

s2 + 1, l2 =
√

s2 + t2, l3 =
√

t2 + u2, l4 =
√

u2 + 1.
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We also have l21 + l23 = l22 + l24, and hence we obtain the following:

(3.4) (l1 − l2)(l1 + l2) = (l4 − l3)(l4 + l3)

and

(3.5) (l1 − l4)(l1 + l4) = (l2 − l3)(l2 + l3).

Now, we suppose that P satisfies G1 = G2 with t 6= 1 and s 6= u.
We prove, first of all, a series of lemmas as follows, and then we will show

that the assumption t 6= 1 and s 6= u leads a contradiction.
First, we prove the following relationship between l1 and l2.

Lemma 3.1. Suppose that P satisfies G1 = G2. Then we have the following.

(1) The relationship between l1 and l2 is given by

(3.6) φl2 = ψl1,

where we put

(3.7)
φ = 4(2 + t)(1 + 2t)(2s+ u)(s+ 2u) + 9(t2 − 1)(s2 − u2),

ψ = 2(2s+ u)(s+ 2u)(5t2 + 8t+ 5) + 3(t2 − 1)(5s2 + 8su+ 5u2).

(2) If t 6= 1, then we get

(3.8) t =
−(7s+ 5u) +

√

12(s2 + 1)(2s+ u)(s+ 2u)

5s+ u
.

Proof. It follows from (3.2) that

(3.9) (1 + 2t)(l1 + l4) = (2 + t)(l2 + l3)

and

(3.10) (s+ 2u)(l1 + l2) = (2s+ u)(l3 + l4).

Together with (3.4), (3.10) shows that

(3.11) (2s+ u)(l1 − l2) = (s+ 2u)(l4 − l3).

Combining (3.5) and (3.9) also gives

(3.12) (2 + t)(l1 − l4) = (1 + 2t)(l2 − l3).

It follows from (3.9) and (3.12) that

(3.13) (a+
1

a
)l1 + (a−

1

a
)l4 = 2l2

and from (3.10) and (3.11) we also obtain

(3.14) (b+
1

b
)l1 + (b −

1

b
)l2 = 2l4,

where we use

(3.15) a =
1 + 2t

2 + t
, b =

s+ 2u

2s+ u
.
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In the equations (3.13) and (3.14), we may eliminate l4 and then replace l1 and
l2 with those in (3.3). Then we get (3.6). This shows that (1) of Lemma 3.1
holds.

In order to prove (2), first note that φ and ψ can be written, respectively, as

(3.16)
φ = {(5s+ 7u)t+ s+ 5u}{(5s+ u)t+ 7s+ 5u},

ψ = {(5s+ 7u)t+ s+ 5u}{(7s+ 5u)t+ 5s+ u}.

Since s, t and u are positive, it follows from (3.3), (3.6) and (3.16) that

(3.17)
(t2 − 1){(5s+ u)2t2 + 2(7s+ 5u)(5s+ u)t

+ (s2 + 1)(5s+ u)2 − s2(7s+ 5u)2} = 0.

This completes the proof of Lemma 3.1. �

Second, just the similar argument as in the proof of Lemma 3.1 gives the
relationship between l3 and l4, from which we get the following. Note that it
can be also obtained by interchanging s and u in (3.8).

Lemma 3.2. Suppose that P satisfies G1 = G2. If t 6= 1, then we have

(3.18) t =
−(7u+ 5s) +

√

12(u2 + 1)(2u+ s)(u+ 2s)

5u+ s
.

Using Lemma 3.1 and Lemma 3.2, we may obtain the following.

Lemma 3.3. Suppose that P satisfies G1 = G2. If t 6= 1 and s 6= u, then we

have

(3.19)
3
√
3{(5s+ u)

√

u2 + 1 + (5u+ s)
√

s2 + 1}

= − (s2 + 10su+ u2 − 24)
√

(2u+ s)(2s+ u).

Proof. Since t 6= 1, it follows from (3.8) and (3.18) that

(3.20)
3
√
3(s2 − u2)

√

(2u+ s)(2s+ u)
= (5s+ u)

√

u2 + 1− (5u+ s)
√

s2 + 1.

The right hand side of (3.20) can be rewritten as
(3.21)

(5s+ u)
√

u2 + 1− (5u+ s)
√

s2 + 1 =
(u2 − s2)(s2 + 10su+ u2 − 24)

(5s+ u)
√
u2 + 1 + (5u+ s)

√
s2 + 1

.

Hence, combining (3.20) and (3.21) completes the proof of Lemma 3.3. �

Third, we prove the following relationship between l1 and l4.

Lemma 3.4. Suppose that P satisfies G1 = G2. Then we have the following.

(1) The relationship between l1 and l4 is given by

(3.22) {(c2 − 1)(d2 + 1) + 2d(c2 + 1)}l4 = {4cd− (c2 − 1)(d2 − 1)}l1,
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where we put

(3.23) c =
2s+ u

s+ 2u
, d =

1 + 2t

2 + t
.

(2) If t 6= 1 and s 6= u, then we get

(3.24) t =
−(5s2 + 32su+ 5u2 − 30) + 18ǫ

√

(s2 + 1)(u2 + 1)

s2 + 10su+ u2 − 24
,

where ǫ = ±1.

Proof. As in the proof of Lemma 3.1, it follows from (3.9)-(3.12) that

(3.25)
2l1 = (c−

1

c
)l3 + (c+

1

c
)l4,

2l3 = (d−
1

d
)l1 + (d+

1

d
)l4,

where c and d are defined in (3.23). Let us eliminate l3 in (3.25). Then we get
(3.22).

In order to prove (2) of Lemma 3.4, first note that (3.22) can be written as

(3.26) (cd+ c+ d− 1)(c− d+ cd+ 1)l4=(cd+ c+ d− 1)(c+ d− cd+ 1)l1.

The assumption s ≥ u shows that c− 1 ≥ 0. Hence we see that cd+ c+ d− 1
is positive. Together with (3.26), this implies

(3.27) (c− d+ cd+ 1)l4 = (c+ d− cd+ 1)l1.

By replacing c, d, l1 and l4 in (3.27) with those in (3.3) and (3.23), we get

(3.28) (s2 − u2)(αt2 + 2βt+ γ) = 0,

where we put

(3.29)

α = s2 + 10su+ u2 − 24,

β = 5s2 + 32su+ 5u2 − 30,

γ = 5(5s2 + 14su+ 5u2)− 24.

Note that (3.19) yields α < 0. Since s 6= u, from (3.28) we obtain (3.24).
This completes the proof of Lemma 3.4. �

Now, it follows from (3.8) and (3.24) that

(3.30)
− (s2 + 10su+ u2 − 24)

√

(2s+ u)(s+ 2u)

= 3
√
3{(5u+ s)

√

s2 + 1− ǫ(5s+ u)
√

u2 + 1}.

From (3.18) and (3.24) we also obtain

(3.31)
− (s2 + 10su+ u2 − 24)

√

(2s+ u)(s+ 2u)

= 3
√
3{(5s+ u)

√

u2 + 1− ǫ(5u+ s)
√

s2 + 1}.
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Together with (3.19), (3.30) shows that
(3.32)

(5s+ u)
√

u2 + 1 + (5u+ s)
√

s2 + 1 = (5u+ s)
√

s2 + 1− ǫ(5s+ u)
√

u2 + 1.

Finally, according to ǫ = ±1 in Lemma 3.4 we divide by two cases as follows.

Case 1. ǫ = +1. In this case, from (3.32) we get

(3.33) (5s+ u)
√

u2 + 1 = 0,

which is a contradiction.

Case 2. ǫ = −1. In this case, one of the three equations (3.19), (3.30) and
(3.31) is nothing but the same as the other. Since t > 1, we get from (3.8)

(3.34) s3 + 2us2 − 5s− u > 0.

From (3.19), we also obtain

(3.35) s2 + 10su+ u2 − 24 < 0.

Together with the assumption s > u ≥ 1, it follows from (3.34) and (3.35) that

(3.36)
√
2 < s < −5 + 4

√
3(< 2), 1 < u <

√
2.

We rewrite (3.19) as follows.

(3.37)
(5s+ u)

√
u2 + 1 + (5u+ s)

√
s2 + 1

√

(2u+ s)(2s+ u)
=

24− (s2 + 10su+ u2)

3
√
3

.

Since (3.36) holds, we obtain

(3.38) s2 + 10su+ u2 > 3 + 10
√
2.

Hence, the right hand side of (3.37) satisfies

(3.39)
24− (s2 + 10su+ u2)

3
√
3

<
21− 10

√
2

3
√
3

.

On the other hand, we get from (3.36)

(3.40)
(5s+ u)

√

u2 + 1 + (5u+ s)
√

s2 + 1 > 10 +
√
2 + (5 +

√
2)
√
3

> 12 + 6
√
2,

where the second inequality follows from
√
3 >

√
2. We also obtain from (3.36)

(3.41)

√

(2u+ s)(2s+ u) <

√

(2 + 2
√
2)(4 +

√
2)

<
√
27 = 3

√
3.

Thus, the left hand side of (3.37) satisfies

(3.42)
(5s+ u)

√
u2 + 1 + (5u+ s)

√
s2 + 1

√

(2u+ s)(2s+ u)
>

12 + 6
√
2

3
√
3

.
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Note that 12 + 6
√
2 > 21 − 10

√
2. Hence, together with (3.39) and (3.42),

(3.37) leads a contradiction. This contradiction shows that t = 1 or s = u, that
is, the quadrangle P is a rhombus or a kite. Therefore, Theorem 1.4 completes
the proof of Theorem 1.5.

4. Kites satisfying G1 = G2

In this section, we classify the kites satisfying G1 = G2 as follows.
Suppose that P denotes a kite. We denote by O the intersection point of

diagonals of P . Let us put by A the vertex which is closest to the point O. As
in Section 2, we may introduce a coordinate system so that the point O is the
origin and P is similar to the kite Q whose vertices are given by

(4.1) A(1, 0), B(0, s), C(−t, 0), D(0,−s),

where s ≥ 1 and t ≥ 1. Note that when t = 1, Q (and hence) P is a rhombus.
Suppose that s ≥ 1 and t > 1. Then, it follows from (3.8) with u = s that

(4.2) t =
√
3
√

s2 + 1− 2.

Since t > 1, we have s >
√
2.

Now, we prove the following.

Proposition 4.1. A kite P satisfies G1 = G2 if and only if P is either a

rhombus or similar to the kite Q defined by (4.1), where s >
√
2 and t is given

by (4.2).

Proof. It suffices to prove the if part of Proposition 4.1. It is straightforward
to show that

(4.3) G1 = G2 =
1

3
(3−

√
3
√

s2 + 1, 0).

This completes the proof of Proposition 4.1. �
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