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INTEGRAL CURVES OF THE CHARACTERISTIC VECTOR

FIELD ON CR-SUBMANIFOLDS OF MAXIMAL

CR-DIMENSION

Hyang Sook Kim and Jin Suk Pak

Abstract. In this paper we study CR-submanifolds of maximal CR-
dimension by investigating extrinsic behaviors of integral curves of char-
acteristic vector field on them. Also we consider the notion of ruled
CR-submanifold of maximal CR-dimension which is a generalization of
that of ruled real hypersurface and find some characterizations of ruled
CR-submanifold of maximal CR-dimension concerning extrinsic shapes
of integral curves of the characteristic vector field and those of CR-Frenet
curves.

1. Introduction

LetM be an n(>1)-dimensionalCR-submanifold of maximalCR-dimension,
that is, of (n − 1) CR-dimension isometrically immersed in a complex space
form M (n+p)/2(c). Denoting by (J, g) the Kähler structure of M (n+p)/2(c), we
find by definition (cf. [4, 6, 11, 12, 14]) that the maximal J-invariant subspace

Dx := TxM ∩ JTxM

of the tangent space TxM of M is of (n− 1) dimensional at any point x ∈ M .
So there exists a unit vector field U1 tangent to M such that

D⊥
x = Span{U1},

∀x ∈ M,

where D⊥
x denotes the subspace of TxM complementary orthogonal to Dx.

Moreover, the vector field ξ defined by

(1.1) ξ := JU1

is normal to M and satisfies

JTM ⊂ TM ⊕ Span{ξ}.
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Hence we have, for any tangent vector field X and for a local orthonormal
basis {ξα ; α = 1, . . . , p} (ξ1 := ξ) of normal vectors to M , the following
decomposition in tangential and normal components:

JX = FX + u1(X)ξ1,(1.2)

Jξα = −Uα + Pξα, α = 1, . . . , p.(1.3)

Since the structure (J, g) is hermitian and J2 = −I, we can easily see from
(1.2) and (1.3) that F and P are skew-symmetric linear endomorphisms acting
on TxM and T⊥

x M , respectively, and that

g(FUα, X) = −u1(X)g(ξ1, P ξα),(1.4)

g(Uα, Uβ) = δαβ − g(Pξα, P ξβ),(1.5)

where T⊥
x M denotes the normal space ofM at x and g the metric onM induced

from g. Furthermore, we also have

(1.6) g(Uα, X) = u1(X)δ1α

and consequently

(1.7) g(U1, X) = u1(X), Uα = 0, α = 2, . . . , p.

Next, applying J to (1.2) and using (1.3) and (1.7), we have

(1.8) F 2X = −X + u1(X)U1, u1(X)Pξ1 = −u1(FX)ξ1,

from which, taking account of the skew-symmetry of P and (1.4),

(1.9) u1(FX) = 0, FU1 = 0, u1(U1) = 1, P ξ1 = 0.

Thus (1.3) may be written in the form

(1.10) Jξ1 = −U1, Jξα = Pξα, α = 2, . . . , p.

Those equations tell us that (F, g, U1, u
1) defines an almost contact metric

structure on M (cf. [4, 6, 10, 14]). In this sense the vector field U1 is called
the characteristic vector field of M in M (n+p)/2(c).

In this paper we study CR-submanifolds of maximal CR-dimension by in-
vestigating extrinsic behaviors of integral curves of characteristic vector field
on them. Also we consider the notion of ruled CR-submanifold of maximal
CR-dimension which is a generalization of that of ruled real hypersurface and
find some characterizations of ruled CR-submanifold of maximal CR-dimension
concerning extrinsic shapes of integral curves of the characteristic vector field
and those of CR-Frenet curves.

2. Preliminaries

Let M be as in Section 1 and let us use the same notations as shown in that
section. We denote by ∇ and ∇ the Levi-Civita connection on M (n+p)/2(c)
and M , respectively. Then the Gauss and Weingarten equations are given by

∇XY = ∇XY + h(X,Y ),(2.1)
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∇Xξα = −AαX +∇⊥
Xξα, α = 1, . . . , p(2.2)

for any tangent vector fields X,Y to M . Here ∇⊥ denotes the normal connec-
tion induced from∇ in the normal bundle TM⊥ ofM , and h and Aα the second
fundamental form and the shape operator corresponding to ξα, respectively. It
is clear that h and Aα are related by

h(X,Y ) =

p
∑

α=1

g(AαX,Y )ξα.

Especially, if we put

(2.3) ∇⊥
Xξα =

p
∑

β=1

sαβ(X)ξβ ,

then (sαβ) is the skew-symmetric matrix of connection forms of ∇⊥.

Now, by using (2.1)-(2.3) and taking account of the Kähler condition ∇J =
0, we differentiate (1.2) and (1.3) covariantly and compare the tangential and
the normal parts. Then we can easily find that

(∇XF )Y = u1(Y )A1X − g(A1Y,X)U1,(2.4)

(∇Xu1)Y = g(FA1X,Y ),(2.5)

∇XU1 = FA1X,(2.6)

g(AαU1, X) = −

p
∑

β=2

s1β(X)Pβα, α = 2, . . . , p(2.7)

for any X,Y tangent to M , where we have put Pξα =
∑p

β=2 Pαβξβ for 2 ≤
α ≤ p.

In what follows, we assume that the distinguished normal vector field ξ1 := ξ
is parallel with respect to the normal connection ∇⊥. Then (2.3) gives

(2.8) s1α = 0, α = 2, . . . , p,

which together with (2.7) yields

(2.9) AαU1 = 0, α = 2, . . . , p.

On the other hand, as the ambient manifold M (n+p)/2(c) is of constant
holomorphic sectional curvature c, its Riemannian curvature tensor R satisfies

R(X,Y )Z =
c

4
{g(Y , Z)X − g(X,Z)Y + g(JY , Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ}

for anyX,Y , Z tangent toM (n+p)/2(c) (cf. [2, 15]). So, the equations of Gauss,
Codazzi and Ricci imply

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(FY,Z)FX(2.10)

− g(FX,Z)FY − 2g(FX, Y )FZ}
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+
∑

α

{g(AαY, Z)AαX − g(AαX,Z)AαY },

(2.11)(a)

(∇XA1)Y − (∇Y A1)X =
c

4
{g(X,U1)FY − g(Y, U1)FX − 2g(FX, Y )U1},

(2.11)(b)

(∇XAα)Y − (∇Y Aα)X =

p
∑

β=2

{sβα(Y )AβX − sβα(X)AβY }, α = 2, . . . , p,

(2.12) [A1, Aα] = 0, α = 2, . . . , p

for any X,Y, Z tangent to M with the aid of (2.8), where R denotes the Rie-
mannian curvature tensor of M with respect to g.

Finally we prepare the following lemma for later use. By the definition of
CR-submanifold M of maximal CR-dimension, we can easily see that M is a
CR-submanifold in the sense of Bejancu (cf. [1, 2]).

Thus we have:

Lemma 2.1 ([1, 3]). Let M be an n-dimensional CR-submanifold of (n − 1)
CR-dimension in a non-flat complex space form M (n+p)/2(c) (more general, in

a Kähler manifold). Then the maximal distribution D is integrable if and only

if

h(JX, Y ) = h(X, JY )

for any sections X,Y in D. Moreover, each of its integral manifolds is totally

geodesic in M (n+p)/2(c) if and only if

h(X,Y ) = 0

for any sections X,Y in D.

3. Integral curves of the characteristic vector field as an

eigenvector of the shape operator A1

We first introduce the following lemma included the proof for later use which
is provided in [6].

Lemma 3.1. Let M be an n-dimensional CR-submanifold of (n − 1) CR-

dimension in a non-flat complex space form M (n+p)/2(c). Suppose the distin-

guished normal vector field ξ be parallel with respect to the normal connection.

If the characteristic vector U1 is an eigenvector of the shape operator A1, then

the corresponding eigenvalue is locally constant.

Proof. Let λ be the eigenvalue of A1 corresponding to the eigenvector U1, that
is,

(3.1) A1U1 = λU1.
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Differentiating (3.1) covariantly along M and using (1.9), (2.6) and (2.11)(a),
we have

−
c

2
g(FX, Y ) + 2g(FA1X,A1Y )(3.2)

= (Xλ)u1(Y )− (Y λ)u1(X) + λg((FA1 +A1F )X,Y ),

from which, putting X = U1 and using (1.9) and (3.1),

(3.3) Xλ = µu1(X) (µ := (U1λ)).

Substituting (3.3) into (3.2), we have

(3.4) −
c

2
g(FX, Y ) + 2g(FA1X,A1Y ) = λg((FA1 +A1F )X,Y ),

or equivalently,

(3.4)′ −
c

2
FX + 2A1FA1X = λ(FA1 +A1F )X.

On the other hand, differentiating (3.3) covariantly and using (2.5), we have

Y Xλ = (Y µ)u1(X) + µg(FA1Y,X) + µu1(∇Y X),

from which, taking the skew-symmetric part,

(3.5) (Y µ)u1(X)− (Xµ)u1(Y )− µg((FA1 +A1F )X,Y ) = 0.

Putting X = U1 into (3.5) and using (1.9) and (3.1), we have

(3.6) Y µ = (U1µ)u
1(Y ),

which and (3.5) yield

(3.7) µ(FA1 +A1F )X = 0.

As was already shown in (3.3), it suffices to prove µ = 0 in order that λ is
locally constant. From now on we assume that µ 6= 0. Then (3.7) gives

(3.8) (FA1 +A1F )X = 0,

which together with (3.4) implies

(3.9) −
c

4
FX +A1FA1X = 0.

Substituting FX into (3.9) instead of X and using (1.8), (1.9), (3.1) and (3.8),
we can easily see that

(3.10) A2
1X = −

c

4
X + (

c

4
+ λ2)u1(X)U1.

Differentiating (2.6) covariantly and using (2.4), (2.6) itself and (3.1), we
have

∇Y ∇XU1 −∇∇Y XU1 = λu1(X)A1Y − g(A1X,A1Y )U1 + F (∇Y A1)X,

from which, taking the skew symmetric part and using (1.8), (1.9) and (2.11)(a)

R(Y,X)U = λ{u1(X)A1Y − u1(Y )A1X}+
c

4
{u1(X)Y − u1(Y )X}.
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On the other hand, it is clear from (1.9), (2.9) and (2.10) that

R(Y,X)U =
c

4
{u1(X)Y − u1(Y )X},

from which, comparing with the above equation, we have

(3.11) λ{u1(X)A1Y − u1(Y )A1X} = 0.

Substituting U1 and A1Y into (3.11) instead of X and Y , respectively, and
using (1.9), (3.1) and (3.10), we can obtain

(3.12) cλ{u1(Y )U1 − Y } = 0.

Since c 6= 0 and n > 1, (3.12) gives λ = 0 on the set {x ∈ M |µ(x) 6= 0}, which
is a contradiction because of µ := U1λ. Hence µ = 0 identically on M , which
and (3.3) imply our assertion. �

Proposition 3.2. Let M be as in Lemma 2.1. Suppose the distinguished nor-

mal vector field ξ be parallel with respect to the normal connection. If the

characteristic vector U1 is an eigenvector of the shape operator A1, then ev-

ery integral curve for U1 is a circle lying on a complex line as a curve in

M (n+p)/2(c).

Proof. By means of Lemma 3.1, if the characteristic vector U1 is an eigenvector
of the shape operator A1, then A1U1 = λU1 for some locally constant function
λ, which together with (1.9) and (2.6) yields ∇U1

U1 = 0. Hence, from (2.1),
(2.2) and (2.9), it is clear that

∇U1
U1 = λξ, ∇U1

ξ = −λU1.

If γ is an integral curve of U1, those equations yield that it is a circle of curvature
|λ| in M (n+p)/2(c). Furthermore, if we take a totally geodesic complex line of
M (n+p)/2(c) whose tangent space at γ(0) is spanned by γ̇(0) = U1γ(0) and
Jγ̇(0) = ξγ(0), those equations guarantee that γ lies on this complex line. �

The next theorem gives an affirmative answer of the converse problem of
Proposition 3.2.

Theorem 3.3. Let M be as in Lemma 2.1. Suppose the distinguished normal

vector field ξ be parallel with respect to the normal connection. Then the charac-

teristic vector U1 is an eigenvector of the shape operator A1 if and only if every

integral curve for U1 lies on a totally geodesic complex line of M (n+p)/2(c).

Proof. By means of Proposition 3.2 it suffices to show the “if” part. Let γ
be an integral curve of the characteristic vector U1. Then there is a smooth
function κ which satisfies∇γ̇ γ̇(s) = κ(s)Jγ̇(s) as a curve onM (n+p)/2(c). Since
γ̇(s) = U1γ(s), it follows from (1.1), (2.1), (2.6) and (2.9) that

κ(s)ξγ(s) = κ(s)Jγ̇(s) = ∇γ̇ γ̇(s) + g(A1γ̇(s), γ̇(s))ξγ(s)

= FA1U1γ(s) + g(A1U1γ(s), U1γ(s))ξγ(s),
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from which, taking the tangential components for M , we have FA1U1γ(s) = 0.
Hence U1γ(s) is an eigenvector of the shape operator A1 and consequently so is
U1 because γ is an arbitrary integral curve of U1. �

Remark. As already mentioned in §1, a real hypersurface M of M (n+p)/2(c)
is a typical example of CR-submanifold of maximal CR-dimension. Moreover,
when the characteristic vector U1 is a principal curvature vector of M , M is
called a Hopf hypersurface(cf. [5, 7, 8, 9]). By means of Proposition 3.2 and
Theorem 3.3, we can see the features of integral curves for the characteristic
vector of a Hopf hypersurface in a non-flat complex space form M (n+p)/2(c).
For more details, see [5, 8].

4. Extrinsic shapes of the characteristic vector field on

CR-submanifolds with integrable maximal holomorphic

distribution D

Let M be an n-dimensional CR-submanifold of (n − 1) CR-dimension in
a non-flat complex space form M (n+p)/2(c) with parallel distinguished normal
vector field ξ with respect to the normal connection. In particular, we consider
those CR-submanifolds M such that the maximal holomorphic distribution
D is integrable and each of its integral manifolds is a totally geodesic com-
plex submanifold of M (n+p)/2(c) which is locally congruent to M (n−1)/2(c).
In what follows, such a submanifold M is called a ruled CR-submanifold of

maximal CR-dimension. The notion of ruled CR-submanifold of maximal CR-
dimension is a natural extension of that of ruled real hypersurface.

On the other hand, in their paper [8], Maeda and Adachi proved the following
lemma.

Lemma 4.1 ([8]). A real hypersurface M of a non-flat complex space form

M (n+1)/2(c) is a ruled real hypersurface if and only if every geodesic on M
whose initial vector is orthogonal to the characteristic vector U1 is a geodesic

as a curve in M (n+1)/2(c).

In this section we want to extend Lemma 4.1 to the case of ruled CR-
submanifold of maximal CR-dimension and prove the following theorem.

Theorem 4.2. Let M be an n-dimensional CR-submanifold of (n − 1) CR-

dimension in a non-flat complex space form M (n+p)/2(c) with parallel distin-

guished normal vector field ξ with respect to the normal connection. Then M
is a ruled CR-submanifold of maximal CR-dimension if and only if every geo-

desic on M whose initial vector is orthogonal to the characteristic vector U1 is

a geodesic as a curve in M (n+p)/2(c).

Proof. Assume that M is a ruled CR-submanifold of maximal CR-dimension.
By means of Lemma 2.1 we can see that

(4.1) h(X,Y ) = 0
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for any sections X,Y in D. Since

h(X,Y ) = A1(X,Y )ξ +

p
∑

α=2

g(AαX,Y )ξα

for any tangent vectors X,Y to M , it follows from (2.9) and (4.1) that

(4.2) Aα = 0, α = 2, . . . , p.

Thus we can apply the codimension reduction theorems due to Kawamoto ([4])
and Okumura ([13]) since the distinguished normal vector field ξ is parallel with
respect to the normal connection. In fact we can see from (4.2) that there exists
a totally geodesic non-flat complex space formM (n+1)/2(c) in M (n+p)/2(c) such
that M ⊂ M (n+1)/2(c) and hence that M can be regarded as a ruled real
hypersurface of M (n+1)/2(c). Hence Lemma 4.1 implies that every geodesic on
M whose initial vector is orthogonal to the characteristic vector U1 is a geodesic
as a curve in M (n+1)/2(c). But M (n+1)/2(c) is totally geodesic in M (n+p)/2(c)
and consequently every geodesic in M (n+1)/2(c) is also geodesic in M (n+p)/2(c)
because the distinguished normal vector field is parallel with respect to the
normal connection.

For the converse we assume that every geodesic γ on M whose initial vector
γ̇(0) is orthogonal to the characteristic vector U1γ(0) is a geodesic as a curve

in M (n+p)/2(c). Then the Gauss equation (2.1) gives that h(γ̇(0), γ̇(0)) = 0.
Therefore h(X,X) = 0 for arbitrary tangent vector X to M orthogonal to U1

at each point in M , which together with the symmetry of h yields the condition
in Lemma 2.1. Hence we find that M is a ruled CR-submanifold of maximal
CR-dimension. �

5. Extrinsic shapes of CR-Frenet curves on integrable maximal

holomorphic distribution D

Let M be an n(> 1)-dimensional CR-submanifold of CR-dimension (n− 1)
which is isometrically immersed in a Kähler manifold M (n+p)/2.

We assume that the maximal holomorphic distribution D is integrable and
denote by MD its maximal integral manifold. Then MD is locally an invariant
submanifold of M (n+p)/2 and so a Kähler manifold with complex structure J |D
obtained as the restriction of J to D. We shall denote J |D also by the same
symbol J . A smooth curve γ = γ(s) on MD, s being its arc length, is called a
CR-Frenet curve if it satisfies the following differential equation

(5.1) ′∇γ̇ γ̇ = κ(s)Jγ̇ or ′∇γ̇ γ̇ = −κ(s)Jγ̇

for some positive smooth function κ = κ(s), where ′∇γ̇ denotes the covariant
differentiation along γ with respect to the Riemannian connection ′∇ induced
onMD from that ofM (n+p)/2. Here we note that for an arbitrary point x ∈ MD,
an arbitrary unit tangent vector v to MD and an arbitrary positive smooth
function κ, there exist just two CR-Frenet curves γ1, γ2 of curvature κ with
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′∇γ̇ γ̇ = κ(s)Jγ̇, ′∇γ̇ γ̇ = −κ(s)Jγ̇ satisfying the initial condition γi(0) = x,
γ̇i(0) = v (i = 1, 2).

On the other hand, a smooth curve γ = γ(s) in a Riemannian manifold
parametrized by its arc length s is called a Frenet curve of proper order 2

if there exist a field of orthonormal frames {γ̇(s), Ys} along γ and a positive
function κ(s) satisfying the following system of ordinary differential equations

∇γ̇ γ̇ = κ(s)Ys and ∇γ̇Ys = −κ(s)γ̇.

A curve is called a Frenet curve of order 2 if it is either a Frenet curve of proper
order 2 or a geodesic (cf. [5, 8]).

In this section we provide the following theorem as an extrinsic property of
CR-Frenet curve (for Kähler Frenet curves on Kähler manifold, cf. [5, 8, 9]).

Theorem 5.1. Let M be an n-dimensional CR-submanifold of (n − 1) CR-

dimension in a Kähler manifold M (n+p)/2. Then M is a ruled CR-submanifold

of maximal CR-dimension if and only if

(i) the distribution D is integrable, and

(ii) for some positive smooth function κ(s) there exists such an orthonormal

basis {v1, . . . , vn, Jv1, . . . , Jvn} at each point x ∈ MD that CR-Frenet curves

γij of curvature κ(s) on MD through x satisfying that the initial vector γ̇ij(0)
is in the direction vi + vj (1 ≤ i ≤ j ≤ n) are mapped to Frenet curves of order

2 in M (n+p)/2 by the immersion M ⊂ M (n+p)/2.

Proof. First of all we define the covariant differentiation ∇̃ of the second fun-
damental form hD of MD with respect to the connection in (tangent bundle)⊕
(normal bundle) as follows (cf. [2, 14]):

(5.2) (∇̃XhD)(Y, Z) = ′∇⊥
XhD(Y, Z)− hD(

′∇XY, Z)− hD(Y,
′∇XZ),

where ′∇⊥ denotes the normal connection induced from∇ in the normal bundle
TM⊥

D of MD.
The “only if” part is trivial. The rest of the proof is to verify the “if” part

is true. But the proof of “if” part is quite similar as was given in [5] and [9] in
the case of Kähler Frenet curve.

As was already mentioned in the above, the maximal integral manifold MD

is Kählerian, and consequently Lemma 2.1 yields that

(5.3) hD(JX, Y ) = hD(X, JY ) = JhD(X,Y )

for any sections X,Y in D.
Let γij be a CR-Frenet curve satisfying the hyperthesis of our theorem. In

order to deal two equations in (5.1) simultaneously, we set

(5.4) ′∇γ̇ γ̇ = κ(s)Jγ̇,

where κ > 0 or κ < 0. Note that γ̇ij(0) = vi (resp. γ̇ij(0) = (vi + vj)/
√
2) in

the case of i = j (resp. i 6= j) and (′∇γ̇ij
γ̇ij)(0) = ±κ(0)Jγ̇ij(0), where κ(0)
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is positive. Then it is clear from the Gauss equation for MD in M (n+p)/2 and
(5.2) that

(5.5) ∇γ̇ij
γ̇ij = κJγ̇ij + hD(γ̇ij , γ̇ij).

Differentiating (5.5) covariantly along M (n+p)/2 and using (5.2)-(5.4) and (5.5)
itself, we can easily obtain

∇γ̇ij
∇γ̇ij

γ̇ij = κ′Jγ̇ij − κ2γ̇ij + 3κhD(γ̇ij , Jγ̇ij)(5.6)

−AhD(γ̇ij ,γ̇ij)γ̇ij + (∇̃XhD)(γ̇ij , γ̇ij),

where AhD(γ̇ij ,γ̇ij) denotes the shape operator ofMD in direction of hD(γ̇ij , γ̇ij).
On the other hand, by our assumption we have

(5.7) ∇γ̇ij
γ̇ij = κijYij and ∇γ̇ij

Yij = −κij γ̇ij ,

where we set

(5.8) (κij)
2 := κ2 + ‖hD(γ̇ij , γ̇ij)‖

2, Yij :=
1

κij
(κJγ̇ij + hD(γ̇ij , γ̇ij)).

Hence we have

(5.9) ∇γ̇ij
∇γ̇ij

γ̇ij = κij
′Yij − κij

2γ̇ij ,

from which, comparing the tangential components and the normal components
with (5.6) and using (5.8),

(
κij

′

κij
κ− κ′)Jγ̇ij − ‖hD(γ̇ij , γ̇ij)‖

2γ̇ij +AhD(γ̇ij ,γ̇ij)γ̇ij = 0,(5.10)

3κhD(γ̇ij , Jγ̇ij) + (∇̃XhD)(γ̇ij , γ̇ij) =
κij

′

κij
hD(γ̇ij , γ̇ij).(5.11)

Taking the inner product of (5.10) and Jγ̇ij and using (5.3), we obtain

κij
′

κij
(s) =

κ′

κ
(s)

for each s. Therefore, in the case of i = j, the value of (5.11) at s = 0 implies

±3κ(0)hD(vi, Jvi) + (∇̃vihD)(vi, vi) =
κ′

κ
(0)hD(vi, vi),

which yields hD(vi, Jvi) = 0 and consequently

(5.12) hD(vi, vi) = 0, i = 1, . . . , n.

In the case of i 6= j, by the same method as above it follows that

±
3

2
κ(0)hD(vi + vj , Jvi + Jvj) + (∇̃(vi+vj)/

√
2hD)(

vi + vj
√
2

,
vi + vj
√
2

)

=
κ′

κ
(0)hD(

vi + vj
√
2

,
vi + vj
√
2

),
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and hence hD(
vi+vj√

2
,
vi+vj√

2
) = 0 for each distinct i, j, from which and (5.12), it

is clear that
hD(vi, vj) = 0

for each distinct i, j. Since x is an arbitrary point in MD, we have

hD(X,Y ) = 0

for any sections X,Y in D, which together with Lemma 2.1 gives our assertion.
�
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