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A COMMON FIXED POINT THEOREM FOR

T -CONTRACTIONS ON GENERALIZED CONE

b-METRIC SPACES

Manhala Rangamma and Pagidi Mallikarjun Reddy

Abstract. In this paper, we establish a unique common fixed point the-
orem for T -contraction of two self maps on generalized cone b-metric
spaces with solid cone. The result of this paper improves and generalizes
several well-known results in the literature. Two examples are also given
to support the result.

1. Introduction and preliminaries

Let X be a non-empty set. A mapping S : X → X is called a self-map
of X. If there is an element x ∈ X such that S(x) = x, then x is called a
fixed point of the self-map S of X. A result giving a set of conditions on S
and X under which S has a fixed point is known as a fixed point theorem.
In recent times fixed point theorems have gained importance because of their
numerous applications. It is well known that the classical Banach contraction
principle [3] is the first ever fixed point theorem. Many authors established
the Banach contraction principle on certain spaces (see; [5], [6], [7], [8], [9]).
In 1989, Bakhtin [2] introduced b-metric spaces as a generalization of metric
spaces. In 2000, Branciari [5] introduced the notion of generalized (rectangu-
lar) metric, where the triangle inequality of a metric space was replaced by
another inequality, the so called rectangular inequality which involves four or
more points instead of three points. In 2007, L. G. Huang and X. Zhang [8]
introduced the concept of cone metric spaces. They have replaced real number
system by an ordered Banach space. In 2009, A. Azam, M. Arshad and I. Beg
[1] introduced the concept of cone rectangular metric space. In 2011, Hussain
and Shah [9] introduced cone b-metric spaces as a generalization of b-metric
spaces and cone metric spaces. Recently, R. George et al. [7] have introduced
the concept of rectangular b-metric space, which is not necessarily Hausdorff
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and which generalizes the concept of metric space, rectangular metric space
and b-metric space.

Very recently, R. George, et al. [6] have introduced the concept of generalized
cone b-metric space, which generalizes the concepts of cone metric space, cone
rectangular metric space and cone b-metric space. They have proved Banach
fixed point theorem and Kannan fixed point theorem in generalized cone b-
metric space with solid cone. A generalization of contraction mapping has
been introduced and called T -contraction mapping on metric spaces which is
depending on another function by Beiranvand [4].

In this paper, we obtain a unique common fixed point theorem for two self
mappings which satisfy T -contraction mapping on generalized cone b-metric
spaces. The main result of this paper extends and generalizes result of R.
George, et al. [6] on generalized cone b-metric spaces.

The following definitions and results will be needed in the sequel.

Definition 1.1 ([8]). A subset P of a real Banach space E is called a cone if
it has following properties:

(1) P is non-empty, closed and P 6= {θ} , where, θ is a zero vector in E;
(2) a, b ∈ R, a, b ≥ 0, x, y ∈ P =⇒ ax+ by ∈ P ;
(3) x ∈ P and −x ∈ P =⇒ x = θ, i.e., P ∩ (−P ) = {θ} .
For a given cone P ⊂ E, we can define a partial ordering � on E with

respect to P by x � y if and only if y − x ∈ P for x, y ∈ E . We shall write
x ≺ y if x � y and x 6= y, while x ≪ y will stands for y − x ∈ int (P ) , where
int (P ) denotes the interior of P . A cone P is called solid if int (P ) 6= ∅.

Remark 1.2 ([10]). Let P be a cone in a real Banach space E and Let a, b, c, x, y
∈ P . The following properties hold:

(1) If a � b and b ≪ c, then a ≪ c.
(2) If θ � x ≪ c for each c ∈ int (P ) , then x = θ.
(3) If a � b+ c for each c ∈ int (P ), then a � b.
(4) If θ � x � y and a ≥ 0, then θ � ax � ay.
(5) If θ � xn � yn for each n ∈ N and limn→∞ xn = x, limn→∞ yn = y, then

θ � x � y.
(6) If θ � d (xn, x) � bn and bn → θ, then d (xn, x) ≪ c, where {xn} and x

are respectively, a sequence and a given point in X.
(7) If a � λa where a ∈ P and 0 < λ < 1, then a = θ.
(8) If c ∈ int (P ), θ � xn, and xn → θ, then there exists n0 ∈ N such that

for all n > n0, we have xn ≪ c.

Definition 1.3 ([8]). Let X be a non-empty set, E be a real Banach space and
P be a solid cone in E and � is a partial ordering with respect to P. Suppose
that the mapping d : X ×X → E satisfies:

(1) θ ≺ d (x, y) for all x, y ∈ X and d (x, y) = θ if and only if x = y;
(2) d (x, y) = d (y, x) for all x, y ∈ X ;
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(3) d (x, y) � d (x, z) + d (z, y) for all x, y, z ∈ X [triangular inequality].
Then d is called a cone metric on X and the pair (X, d) is called a cone metric

space.

Definition 1.4 ([9]). Let X be a non-empty set, E be a real Banach space, P
be a solid cone in E, � be a partial ordering with respect to P and s ≥ 1 be a
real number. Suppose that the mapping d : X ×X → E satisfies:

(1) θ ≺ d (x, y) for all x, y ∈ X and d (x, y) = θ if and only if x = y;
(2) d (x, y) = d (y, x) , x, y ∈ X ;
(3) d(x, y) � s[d(x, z) + d(z, y)] for all x, y, z ∈ X [b-triangular inequality].

Then d is called a cone b-metric on X and the pair (X, d) is called a cone

b-metric space.

Definition 1.5 ([1]). Let X be a non-empty set, E be a real Banach space,
P be a solid cone in E and � is a partial ordering with respect to P. Suppose
that the mapping d : X ×X → E satisfies:

(1) θ ≺ d (x, y) for all x, y ∈ X and d (x, y) = θ if and only if x = y;
(2) d (x, y) = d (y, x) for all x, y ∈ X ;
(3) d (x, y) � d (x,w) + d (w, z) + d (z, y) for all x, y ∈ X and for all distinct

points w, z ∈ X − {x, y} [rectangular inequality].
Then d is called a cone rectangular metric on X and (X, d) is called a cone

rectangular metric space.

Definition 1.6 ([6]). Let X be a non-empty set, E be a real Banach space, P
be a solid cone in E and � be a partial ordering with respect to P . Suppose
that the mapping d : X ×X → E satisfies:

(1) θ ≺ d (x, y) for all x, y ∈ X and d (x, y) = θ if and only if x = y;
(2) d (x, y) = d (y, x) for all x, y ∈ X ;
(3) there exists a real number s ≥ 1 such that d (x, y) � s [d (x,w) + d (w, z)

+d (z, y)] for all x, y ∈ X and for all distinct points w, z ∈ X − {x, y} [b-
rectangular inequality].

Then d is called a generalized cone b-metric on X and (X, d) is called a
generalized cone b-metric space with coefficient s.

Definition 1.7 ([6]). Let (X, d) be a generalized cone b-metric space with
coefficient s ≥ 1. The sequence {xn} in X is said to be:

(i) a convergent sequence if for every c ∈ E, with θ ≪ c there is n0 ∈ N such
that for all n > n0, d (xn, x) ≪ c for some x ∈ X. We say that the sequence
{xn} converges to x and we denote this by limn→∞ xn = x or xn → x as
n → +∞.

(ii) a Cauchy sequence if for every c ∈ E, with θ ≪ c there is n0 ∈ N such
that for all m,n > n0, d (xn, xm) ≪ c.

(iii) The generalized cone b-rectangular metric space (X, d) is said to be
complete if every Cauchy sequence is convergent in X.

First we give the definition of T -contraction mapping on generalized cone
b-metric spaces which is based on the idea of A. Beiranvand et al. [4].
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Definition 1.8. Let (X, d) be a generalized cone b-metric space with coefficient
s ≥ 1 and T, f : X → X be two self maps. A mapping f of X is said to be a
T -contraction if there exists a real number 0 ≤ λ < 1

s such that

d (Tfx, T fy) � λd (Tx, T y)

for all x, y ∈ X.

2. Main results

Theorem 2.1. Let (X, d) be a generalized cone b-metric space with coefficient

s > 1, P be a solid cone and let the mappings f and T : X → X satisfy the

inequality:

(2.1) d (Tfx, T fy) � λd (Tx, T y)

for all x, y ∈ X, where λ ∈
[

0, 1s
)

. Suppose T is one to one and T (X) is a

complete subspace of X, then the mapping f has a unique fixed point in X.
Moreover, if f and T are commuting at the fixed point of f, then f and T have

a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Define a sequence {xn} in X such
that xn+1 = fxn for all n = 0, 1, 2, . . .. If xm = xm+1 for some m ∈ N, then
xm = fxm. That is, f has a fixed point xm in X.

Assume xn 6= xn+1 for all n ∈ N. Then from (2.1) it follows that,

d (Txn, T xn+1) = d (Tfxn−1, T fxn)

� λd (Txn−1, T xn)

...

� λnd (Tx0, T x1)(2.2)

for all n ∈ N, where 0 ≤ λ < 1
s .

From (2.1), (2.2), b-rectangular inequality and using the fact that 0 ≤ λ < 1
s ,

we get,

d (Txn, T xn+2) = d (Tfxn−1, T fxn+1)

� λd (Txn−1, T xn+1)

� λs [d (Txn−1, T xn) + d (Txn, T xn+2) + d (Txn+2, T xn+1)]

which implies that,

d (Txn, T xn+2) �
λs

1− λs
[d (Txn−1, T xn) + d (Txn+2, T xn+1)]

�
λs

1− λs

[

λn−1d (Tx0, T x1) + λn+1d (Tx0, T x1)
]

�
λs

1− λs

[

1 + λ2
]

λn−1d (Tx0, T x1)

=
s

1− λs

[

1 + λ2
]

λnd (Tx0, T x1)
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= αsλnd (Tx0, T x1) ,(2.3)

where α = 1+λ2

1−λs ≥ 0 for all n ≥ 0.

For the sequence {Txn}, we consider d (Txn, T xn+p) in two cases.
If p is odd say 2m+1 for m ≥ 1, then by using b-rectangular inequality and

(2.2) we get,

d (Txn, T xn+2m+1)

� s [d (Txn, T xn+1) + d (Txn+1, T xn+2) + d (Txn+2, T xn+2m+1)]

� s [d (Txn, T xn+1) + d (Txn+1, T xn+2)] + s2 [d (Txn+2, T xn+3)

+ d (Txn+3, T xn+4) +d (Txn+4, T xn+2m−1)]

� s [d (Txn, T xn+1) + d (Txn+1, T xn+2)]

+ s2 [d (Txn+2, T xn+3) + d (Txn+3, T xn+4)] + · · ·

+ smd (Txn+2m, T xn+2m+1)

� s
[

λnd (Tx0, T x1) + λn+1d (Tx0, T x1)
]

+ s2
[

λn+2d (Tx0, T x1) + λn+3d (Tx0, T x1)
]

+ · · ·

+smλn+2md (Tx0, T x1)
]

� sλn
[

1 + sλ2 + · · ·
]

d (Tx0, T x1)

+ sλn+1
[

1 + sλ2 + · · ·
]

d (Tx0, T x1)

= (1 + λ) sλn
[

1 + sλ2 + · · ·
]

d (Tx0, T x1) .

Hence, d (Txn, T xn+2m+1) �
(

1+λ
1−sλ2

)

sλnd (Tx0, T x1) for all n,m ∈ N.

Let θ ≪ c be given. Since, sλ2 < 1, we note that
(

1+λ
1−sλ2

)

sλnd (Tx0, T x1) →

θ as n → ∞. By Remark 1.2, for any c ∈ int(P ), we can find N1 ∈ N such that

for each n > N1, we have
(

1+λ
1−sλ2

)

sλnd (Tx0, T x1) ≪ c.

Thus,

d (Txn, T xn+2m+1) �

(

1 + λ

1− sλ2

)

sλnd (Tx0, T x1) ≪ c

for all n > N1 and m ≥ 1.
If p is even say 2m for m ≥ 1, then by using b-rectangular inequality, (2.2),

(2.3) and the fact that sλ2 < 1, we get,

d (Txn, T xn+2m)

� s [d (Txn, T xn+1) + d (Txn+1, T xn+2) + d (Txn+2, T xn+2m)]

� s [d (Txn, T xn+1) + d (Txn+1, T xn+2)]

+ s2 [d (Txn+2, T xn+3) + d (Txn+3, T xn+4) +d (Txn+4, T xn+2m)]

� s [d (Txn, T xn+1) + d (Txn+1, T xn+2)]
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+ s2 [d (Txn+2, T xn+3) + d (Txn+3, T xn+4)] + · · ·

+ sm−1 [d (Txn+2m−4, T xn+2m−3) + d (Txn+2m−3, T xn+2m−2)

+d (Txn+2m−2, T xn+2m)]

� s
[

λnd (Tx0, T x1) + λn+1d (Tx0, T x1)
]

+ s2
[

λn+2d (Tx0, T x1) + λn+3d (Tx0, T x1)
]

+ · · ·

+ sm−1
[

λn+2m−4d (Tx0, T x1) + λn+2m−3d (Tx0, T x1)
]

+ sm−1αλn+2m−2d (Tx0, T x1)

� sλn
[

1 + sλ2 + · · ·
]

d (Tx0, T x1)

+ sλn+1
[

1 + sλ2 + · · ·
]

d (Tx0, T x1)

+ sm−1αλn+2m−2d (Tx0, T x1)

= (1 + λ) sλn
[

1 + sλ2 + · · ·
]

d (Tx0, T x1)

+ sm−1αλn+2m−2d (Tx0, T x1) .

Hence,

d (Txn, T xn+2m) �

(

1 + λ

1− sλ2

)

sλnd (Tx0, T x1) + sm−1αλn+2m−2d (Tx0, T x1)

�

(

1 + λ

1− sλ2
+ sm−2αλ2m−2

)

sλnd (Tx0, T x1)

for all n ∈ N and α ≥ 0.
Let θ ≪ c be given. Since, sλ2 < 1, we have

(

1 + λ

1− sλ2
+ sm−2αλ2m−2

)

sλnd (Tx0, T x1) → θ

as n → ∞. By Remark 1.2 for any c ∈ int(P ), we can find N2 ∈ N such that
(

1 + λ

1− sλ2
+ sm−2αλ2m−2

)

sλnd (Tx0, T x1) ≪ c

for all n > N2 and m ≥ 1.

Thus, d (Txn, T xn+2m) �
(

1+λ
1−sλ2 + sm−2αλ2m−2

)

sλnd (Tx0, T x1) ≪ c for

all n > N2 and m ≥ 1. Let N0 = max {N1, N2}. Thus for each c ∈ int(P ),
we have d (Txn, T xn+p) ≪ c for all n > N0 and p ≥ 1. Therefore, {Txn}
is a Cauchy sequence in X. Since, T (X) is a complete subspace of X, then
there exists a point z in T (X) such that lim

n→∞
Txn+1 = lim

n→∞
Tfxn = z. Also,

we can find x ∈ X such that z = Tx. Let θ ≪ c be given, we can choose
natural numbers N3 and N4 such that d (Txn, z) ≪

c
2s(1+λ) for all n > N3 and

d (Txn, T xn+1) ≪
c
2s for all n > N4. Let N = max {N3, N4}.

Using b-rectangular inequality and (2.1) we get,

d (z, T fx) � s [d (z, Txn) + d (Txn, T fxn) + d (Tfxn, T fx)]
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� sd (z, Txn) + sd (Txn, T xn+1) + sλd (Txn, T x)

= sd (z, Txn) + sd (Txn, T xn+1) + sλd (Txn, z)

= s (1 + λ) d (Txn, z) + sd (Txn, T xn+1)

≪
c

2
+

c

2
= c

for all n > N.
Thus for each c ∈ int(P ), we have, d (z, T fx) ≪ c, since c is arbitrary we

have d (z, T fx) = θ. Therefore, Tfx = Tx = z. Since T is one to one, we get
that x = fx. Hence, x is a fixed point of f in X. Now, we prove the uniqueness
of the fixed point of f. Let y be another fixed point of f, that is y = fy. Then,

d (Tx, T y) = d (Tfx, T fy) � λd (Tx, T y) ≺
1

s
d (Tx, T y) ,

which is a contradiction (since s > 1). Hence, Tx = Ty. Since T is one to one,
we conclude that x = y. Since, f and T are commuting at the fixed point of
f, fTx = Tfx = Tx. Therefore Tx is a fixed point of f. Since f has unique
fixed point, Tx = x. Hence Tx = fx = x, that is x is the unique common fixed
point of f and T in X. �

Taking T = I (the identity mapping of X) in Theorem 2.1, we get an
analogue of Banach contraction principle [6] in generalized cone b-metric space
as follows.

Corollary 2.2. Let (X, d) be a complete generalized cone b-metric space with

s > 1 and f : X → X be a mapping satisfies the inequality:

(2.4) d (fx, fy) � λd (x, y)

for all x, y ∈ X, where λ ∈
[

0, 1
s

)

, then f has a unique fixed point in X.

The following examples support Theorem 2.1.

Example 2.3. Let X = A ∪ B, where A = {0} ∪
{

1
n : n ∈ {2, 3, 4, 5, 6}

}

and
B = [1, 2] . Let E = CR (X) be the set of all continuous functions defined on
X to R and P = {φ ∈ E : φ (t) ≥ 0, t ∈ X} ⊂ E. It is known that P is a solid
cone in E. Define d : X ×X → E such that d(x, y) = d(y, x) for all x, y ∈ X
and































d
(

0, 1
2

)

= d
(

1
3 ,

1
4

)

= d
(

1
5 ,

1
6

)

= 0.6et;
d
(

0, 1
3

)

= d
(

1
2 ,

1
5

)

= d
(

1
4 ,

1
5

)

= 0.4et;
d
(

0, 1
4

)

= d
(

1
2 ,

1
6

)

= d
(

1
4 ,

1
6

)

= 0.1et;
d
(

0, 1
5

)

= d
(

1
2 ,

1
3

)

= d
(

1
3 ,

1
6

)

= 0.5et;
d
(

0, 1
6

)

= d
(

1
2 ,

1
4

)

= d
(

1
3 ,

1
5

)

= 0.3et;
d (x, y) = |x− y|2et, otherwise,

where et ∈ E. Then (X, d) is not a cone metric space with respect to P as
d(0, 1/2) = 0.6et ≻ d(0, 1/4)+ d(1/4, 1/2) = 0.1et + 0.3et = 0.4et and (X, d) is
not a cone rectangular metric space with respect to P as d(0, 1/2) = 0.6et ≻
d(0, 1/4) + d(1/4, 1/6) + d(1/6, 1/2) = 0.1et + 0.1et + 0.1et = 0.3et. However,
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it is easy to see that (X, d) is a complete generalized cone b-metric space with
coefficient s = 2 > 1.

Further, let f and T : X → X be the mappings defined by:

f (x) =

{

1
4 if x ∈ A
1
2 if x ∈ B,

and T (x) =















1
2 − x if x ∈ {0} ∪

{

1
n : n ∈ {2, 3, 4}

}

1
3 if x = 1

5
1
5 if x = 1

6
x if x ∈ B.

It is clear that, T is one to one, f satisfies T -contraction (2.1) with λ = 2
5 . In

fact, if x ∈ A and y ∈ B, then d(Tfx, T fy) = d(T (1/4), T (1/2)) = d(1/4, 0) =
0.1et.
Case (i). If x ∈ {0} ∪

{

1
n : n ∈ {2, 3, 4}

}

and y ∈ B, then d(Tx, T y) =

d
(

1
2 − x, y

)

=
∣

∣

1
2 − (x + y)

∣

∣

2
et. Then clearly we can find λ = 2

5 ∈
(

0, 12
)

satis-
fying T -contraction (2.1).
Case (ii). If x ∈ {0} ∪

{

1
n : n ∈ {2, 3, 4}

}

and y ∈
{

1
5 ,

1
6

}

, then we can find

λ = 2
5 ∈

(

0, 12
)

satisfying T -contraction (2.1).

Case (iii). If x ∈ B and y ∈
{

1
5 ,

1
6

}

, then d(Tx, T y) = d
(

Tx, T (15 )
)

=

d
(

x, 1
3

)

=
∣

∣x− 1
3

∣

∣

2
et and d(Tx, T y) = d

(

Tx, T (16 )
)

= d
(

x, 1
5

)

=
∣

∣x− 1
5

∣

∣

2
et.

Then we can find λ = 2
5 ∈

(

0, 12
)

satisfying T -contraction (2.1).
Similarly, If x ∈ A and y ∈ A, then d (Tfx, T fy) = d (T (1/4), T (1/4)) = θ

and if x ∈ B and y ∈ B, then d (Tfx, T fy) = d (T (1/2), T (1/2)) = θ. Hence
f satisfies T -contraction (2.1). However f does not satisfy Banach contrac-
tion (2.4) at x = 1

5 and y = 1, as d (fx, fy) = d
(

1
4 ,

1
2

)

= 0.3et ≻ 2
5d(x, y) =

2
5d

(

1
5 , 1

)

= 2
5

∣

∣

1
5 − 1

∣

∣

2
et = 0.256et. Thus f satisfies all the conditions of Theo-

rem 2.1 and f has unique fixed point 1
4 . Moreover, f and T are commuting at

1
4 and hence x = 1

4 is the unique common fixed point of the mappings f and
T.

Example 2.4. Let X = {a, b, c, d} , where a, b, c, d are distinct natural num-
bers. Let E = Mnxn (R) be the space of real matrices of order n ≥ 1 and P =
{

M = (aij)1≤i,j≤n : aij ≥ 0, ∀i, j
}

is a solid cone in E. Define d : X ×X → E

such that d (x, y) = d (y, x) for all x, y ∈ X and














d (x, x) = On×n for all x ∈ X ;
d (a, b) = 0.1In;
d (a, c) = d (b, c) = 0.01In;
d (a, d) = d (b, d) = d (c, d) = 0.03In,

where In is the identity matrix. In this case, (X, d) is not a cone metric space
with respect to P since, d(a, b) = 0.1In ≻ d(a, c) + d(c, b) = 0.01In + 0.01In =
0.02In and (X, d) is not a cone rectangular metric space with respect to P since,
d(a, b) = 0.1In ≻ d(a, c)+ d(c, d)+ d(d, b) = 0.01In+0.03In+0.03In = 0.07In.
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However, it is easy to see that (X, d) is a complete generalized cone b-metric
space with coefficient s = 1.5 > 1. Further, let f and T : X → X be the
mappings defined by:

f (x) =

{

c if x 6= d
a if x = d,

and T (x) =







b if x = a
a if x = b
x if x ∈ {c, d}.

Since, Tf(d) = T (f(d)) = T (a) = b and fT (d) = f(T (d)) = f(d) = a.
Therefore Tf(d) 6= fT (d). That is, f and T are non-commuting self maps. It is
clear that, T is one to one, f satisfies T -contraction (2.1) on generalized cone
b-metric space (X, d) with λ = 1

3 < 1
s = 2

3 . Thus f satisfies all the conditions of
Theorem 2.1 and f has unique fixed point c. Moreover, f and T are commuting
at c and hence x = c is the unique common fixed point of the mappings f and
T.

Conclusion.

In this article we have proved that the existence and uniqueness of common
fixed point theorem for T -contraction in generalized cone b-metric spaces. We
note that the results of this paper generalize the results of R. George, et al. [6]
on generalized cone b-metric spaces.
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