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GALOIS IRREDUCIBLE POLYNOMIALS

Miyeon Kwon, Ji-Eun Lee, and Ki-Suk Lee

Abstract. In this paper, the fundamental theorem of Galois Theory
is used to generalize cyclotomic polynomials and construct irreducible
polynomials associated with the n-th primitive roots of unity.

1. Introduction

Let n be a positive integer and w be the n-th primitive root of unity, that

is, w = e
2πi

n .
If a monic polynomial p(x) with integer coefficients satisfies that p(w) = 0

and is irreuducible over the field of rational numbers, p(x) is called the n-th
cyclotomic polynomial, denoted by Φn(x).

It is well-known (see [3]) that the n-th cyclotomic polynomial Φn(x) is equal
to

Φn(x) =
∏

k∈Z∗

n

(x− wk),

where Z∗
n is the multiplicative group of integers modulo n.

In this paper, we use the fundamental theorem of Galois theory to gen-
eralize cyclotomic polynomials and give an algorithm to generate irreducible
polynomials associated with the n-th primitive roots of unity.

2. Galois irreducible polynomials

Throughout the paper, we assume that n is a postive integer and w = e
2πi

n

is the n-th primitive root of unity. Following the conventional notations, Q
and Q[x] denote the field of rational numbers and the polynomial ring over Q,
respectively.

Let H be a subgroup of Z∗
n and Z∗

n/H = {h1H,h2H, . . . , hlH} be its corre-
sponding quotient group. For each k = 1, . . . , l, define ak =

∑

h∈H whkh.
We now consider the monic polynomial having a1, . . . , al as its roots, denoted

by Jn,H(x). Then Jn,H(x) = (x − a1)(x − a2) · · · (x − al). Especially, if H =
{1}, then Jn,H(x) = Φn(x). This paper concerns irreducible polynomials with
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integer coefficients in the form of Jn,H(x). Such irreducible polynomials will
be called Galois irreducible polynomials.

In this section, we will show that any Jn,H(x) is a monic polynomial with
integer coefficients. In particular, if n is a prime number, any Jn,H(x) is irre-
ducible over Q. We will prove this by showing that σ(Jn,H(x)) = Jn,H(x) for
any σ ∈ Gal(Q(w)/Q), where Q(w) is the simple extension field of Q contain-
ing w and Gal(Q(w)/Q) is the Galois group of Q(w) over Q. We first recall a
well-known result (see [1]) about Gal(Q(w)/Q).

Lemma 2.1. Let Q(w) be the simple extension field of Q containing w. Then

the Galois group Gal(Q(w)/Q) over Q is isomorphic to Z∗
n with the mapping

θ : Z∗
n → Gal(Q(w)/Q), defined by θ[k](w) = wk.

For a subgroup H of Z∗
n and Z∗

n/H , if we let ξ = Σh∈Hwh, then we can
use the mapping θ defined in Lemma 2.1 to express a1, . . . , al in terms of ξ as
follows.

a1 =
∑

h∈H

wh1h = θ[h1](ξ),

a2 =
∑

h∈H

wh2h = θ[h2](ξ),

...

al =
∑

h∈H

whlh = θ[hl](ξ).

For any k ∈ Z∗
n, the mapping τk : Z∗

n/H → Z∗
n/H , defined by τk(hiH) =

khiH , is a bijection on Z∗
n/H . Moreover, θ[k](ξ) = θ[k′](ξ) for any k and

k′ ∈ hiH . This allows us to claim that {θ[kh1](ξ), . . . , θ[khl](ξ)} = {a1, . . . , al}
for any k ∈ Z∗

n and therefore Jn,H(x) = (x − a1)(x − a2) · · · (x − al) is in Q[x]
as the following theorem asserts.

Theorem 2.2. For any subgroup H of Z∗
n, Jn,H(x) is in Q[x].

Proof. For each σ ∈ Gal(Q(w)/Q), there is a k ∈ Z∗
n such that σ = θ[k].

θ[k](Jn,H(x)) = (x− θ[k](a1))(x − θ[k](a2)) · · · (x− θ[k](al))

= (x− θ[kh1](ξ))(x − θ[kh2](ξ)) · · · (x− θ[khl](ξ))

= (x− a1)(x− a2) · · · (x− al) = Jn,H(x). �

In fact, Jn,H(x) ∈ Z[x], the set of all polynomials with integer coefficients.
To see this, note that each coefficient of Jn,H(x) can be expressed as k0+k1w+
· · ·+ kmwm, where ki’s are integers.

Let p(x) = k0 + k1x + · · · + kmxm. Then p(x) ∈ Z[x]. Since Φn(x) is
a monic polynomial in Z[x], the long division allows us to rewrite p(x) as
p(x) = Φn(x)g(x) + r(x), where r(x) ∈ Z[x] is of degree less than φ(n). Note
that φ(n) is the Euler’s totient function that counts the positive integers less
than or equal to n that are relatively prime to n.
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Letting x = w, we get p(w) = Φn(w)g(w) + r(w) = r(w). That is,

k0 + k1w + · · ·+ kmwm = m0 +m1w + · · ·+mφ(n)−1w
φ(n)−1

for some integers m0, . . . ,mφ(n)−1. Therefore the following theorem suffices to
show that Jn,H(x) ∈ Z[x].

Theorem 2.3. If A is a rational number in the form A = m0 +m1w + · · ·+
mφ(n)−1w

φ(n)−1, where m0, . . . ,mφ(n)−1 are integers, then A is an integer.

Proof. Let p(x) = (m0 −A) +m1x + · · ·+mφ(n)−1x
φ(n)−1. Then p(x) ∈ Q[x]

with p(w) = 0. Since Φn(x) is the minimal polynomial of w over Q (i.e., the
irreducible polynomial over Q having w as one of its zeros), Φn(x) divides
p(x). By noting that the degree of p(x) is less than φ(n), we can conclude that
p(x) = 0, equivalently m0 = A,m1 = 0, . . . ,mφ(n)−1 = 0. �

We here recall the Möbius function defined on the set of positive integers.
For any positive integer n, the Möbius function, denoted by µ(n), is defined to
be the sum of the primitive n-th roots of unity, that is, µ(n) =

∑

k∈Z∗

n

wk. It is

known (see [2]) that µ(n) has values in {−1, 0, 1} depending on the factorization
of n into prime factors:

• µ(n) = 1 if n is a square-free integer with an even number of prime
factors.

• µ(n) = −1 if n is a square-free integer with an odd number of prime
factors.

• µ(n) = 0 if n has a squared prime factor.

This enables us to identify Jn,H(x) when ξ =
∑

h∈H wh is in Q as stated
below.

Corollary 2.4. Let H be a proper subgroup of Z∗
n. If ξ =

∑

h∈H wh ∈ Q, then

ξ = 0 and hence Jn,H(x) = xl, where l = |Z∗
n/H |.

Proof. If ξ =
∑

h∈H wh ∈ Q, then ξ = N for some integer N and a1 = a2 =

· · · = al = N . Therefore Nl = a1+a2+ · · ·+al = Σk∈Z∗

n
wk. Since

∑

k∈Z∗

n

wk =

µ(n) and µ(n) has values in {−1, 0, 1}, we can conclude that N = 0 as l ≥ 2.
This completes the proof that Jn,H(x) = (x− a1) · · · (x− al) = xl. �

For example, let us look at the case of n = 8. Then w = e2πi/8 and Z∗
8 =

{1, 3, 5, 7}. If we choose H = {1, 5}, then we get a1 = w + w5 = 0 and
a2 = w3 + w7 = 0, leading to J8,H(x) = x2. However, this oocurs only when
µ(n) = 0, that is, n has a squared prime factor. In fact, if µ(n) 6= 0, then any
polynomial in the form of Jn,H(x) is irreducible over Q. We will prove it in
Theorem 3.6. The following theorem proves its special case when n is a prime
number.

Theorem 2.5. If p is a prime number, then Jp,H(x) is the minimal polynomial

of ξ =
∑

h∈H wh over Q for any subgroup H of Z∗
p.
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Proof. Let P (x) be the minimal polynomial of ξ over Q. Then for any σ ∈
Gal(Q(w)/Q), σ(ξ) is a zero of P (x). Since

{

1, w, . . . , wp−1
}

is a basis of Q(w)

over Q, it is clear that
∑

h∈H wh 6=
∑

h′∈H′ wh′

wheneverH andH ′ are disjoint
subsets of Z∗

p. Hence a1, . . . , al are distinct zeros of P (x). As a result, we have
that Jn,H(x) = (x−a1) · · · (x−al) divides P (x). This completes the proof. �

For example, let us look at the case of p = 7. Then w = e2πi/7 and Z∗
7 has

4 subgroups: H1 = {1}, H2 = {1, 6}, H3 = {1, 2, 4}, and H4 = Z∗
7.

Clearly, J7,H1
(x) = Φ7(x) and J7,H4

(x) = x − 1. Elementary calculations
give J7,H2

(x) and J7,H3
(x) as follows.

J7,H2
(x) = (x− (w + w6))(x− (w2 + w5))(x − (w3 + w4))

= x3 + x2 − 2x− 1;

J7,H3
(x) = (x− (w + w2 + w4))(x − (w3 + w5 + w6))

= x2 + x+ 2.

3. Irreducibilty of Jn,H(x)

In this section, we study the irreducibility of Jn,H(x) when n is not neces-
sarily prime. First of all, it is clear that Jn,H(x) is irreducible over Q if and
only if a1, . . . , al are distinct: Let ξ =

∑

h∈H wh and P (x) be the minimal
polynomial of ξ over Q. Since Q(w) is a normal extention of Q, P (x) is sep-
arable in Q(w) with P (σ(ξ)) = 0 for all σ ∈ Gal(Q(w)/Q). In other words,
P (x) is a product of linear factors over Q(w) that includes all distinct factors
of (x − a1), . . . , (x− al).

The fundamental theorem of Galois theory (see [1]) allows us to obtain
another equivalent condition on H for irreducible polynomials Jn,H(x).

Theorem 3.1. Let H be a subgroup of Z∗
n and Z∗

n/H = {h1H, . . . , hlH}. Let

ak =
∑

h∈H whkh, k = 1, . . . , l and Q(w)H be the subfield of Q(w) fixed by

{θ[h] : h ∈ H}. Then Jn,H(x) = (x−a1) · · · (x−al) is irreducible over Q if and

only if Q(ξ) = Q(w)H , where ξ =
∑

h∈H wh.

Proof. For any h∗ ∈ H , θ[h∗](ξ) =
∑

h∈H wh∗h =
∑

h∈H wh = ξ, since H is a
subgroup of Z∗

n. This implies that ξ ∈ Q(w)H and hence Q(ξ) is a subfield of
Q(w)H with [Q(w)H : Q(ξ)] [Q(ξ) : Q] = l.

Let P (x) be the minimal polynomial of ξ over Q. Then P (x) is a polynomial
in Q[x] of degree equal to [Q(ξ) : Q] and divides Jn,H(x). Putting together, we
can conclude that

Q(ξ) = Q(w)H ⇔ [Q(ξ) : Q] = l

⇔ deg(P (x)) = l

⇔ P (x) = Jn,H(x). �

Theorem 3.1 leads us to several corollaries as follows.
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Corollary 3.2. Let p be a prime number and w = e2πi/p. Then any subfield F
of Q(w) over Q can be expressed as F = Q(ξ), where ξ =

∑

h∈H wh for some

subgroup H of Z∗
p.

Proof. For each subfield F of Q(w) over Q, Gal(Q(w)/F ) is a subgroup of
Gal(Q(w)/Q), which is isomorphic to Z∗

n with the correspondence k 7→ θ[k](w)
= wk. Let H be the subgroup of Z∗

n corresponding to Gal(Q(w)/F ). By The-
orem 2.5, Jp,H(x) is irreducible and therefore F = Q(ξ), where ξ =

∑

h∈H wh.
�

Corollary 3.3. If H is a maximal subgroup of Z∗
n and ξ =

∑

h∈H wh /∈ Q,

then Jn,H(x) is irreducible over Q.

Proof. Suppose that H is a maximal subgroup of Z∗
n. Then Z∗

n/H is a cyclic
group of order p, where p is prime. From the proof of Theorem 3.1, we get
[Q(w)H : Q(ξ)] [Q(ξ) : Q] = p. Since ξ /∈ Q, [Q(ξ) : Q] = p and therefore
[Q(w)H : Q(ξ)] = 1, completing the proof. �

Lee and Kim in [4] proved the following corollary by showing that the zeros
of the polynomial are distinct. We are going to use Theorem 3.1 to prove it.

Corollary 3.4. For any positive integer n > 2,

P (x) =
∏

k∈Z∗

n
;k≤φ(n)/2

(x− (wk + w−k))

is irreducible over Q.

Proof. Consider the subgroup H = {1,−1} of Z∗
n and let ξ = w + w−1. Then

note that P (x) = Jn,H(x). We will show that Q(w)H , the subfield of Q(w)
fixed by {σ ∈ Gal(Q(w)/Q) : σ(w) = w or w−1}, is equal to Q(ξ).

Let α be any element in Q(w)H . Then α =
∑m

k=0 ckw
k for some nonnegative

integer m and
∑m

k=0 ckw
−k =

∑m
k=0 ckw

k. 2α can be expressed as 2α =
∑m

k=0 ck(w
k + w−k). Note that for each k ≥ 0,

w(k+1) + w−(k+1) = (wk + w−k)(w + w−1)− (w(k−1) + w−(k−1)).

By the mathematical induction, it is clear that each wk+w−k ∈ Q(ξ) and hence
α ∈ Q(ξ). This implies that Q(w)H ⊆ Q(ξ). By recalling Q(ξ) ⊆ Q(w)H , we
can conclude that Q(w)H = Q(ξ) and therefore Jn,H(x) is irreducible. �

For example, consider the subgroup H = {1, 8} of Z∗
9. Then we get a1 =

w + w−1, a2 = w2 + w−2, a3 = w4 + w−4 and

J9,H(x) = (x− a1)(x− a2)(x− a3) = x3 − 3x+ 1.

As a result of Corollary 3.4, it can be shown that cos(2πkn ) is irrational
whenever k is relatively prime to n.

Theorem 3.5. If k ∈ Z∗
n and n > 2, then cos

(

2π
n k

)

/∈ Q.
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Proof. In the proof of Corollary 3.4, we showed that Jn,{1,−1}(x) is an irre-

ducible polynomial over Q whose zeros are wk +w−k for k ∈ Z∗
n. This implies

that none of wk + w−k is in Q. Therefore 1
2 (w

k + w−k) = cos
(

2π
n k

)

/∈ Q. �

We will conclude the section with the following theorem asserting that
Jn,H(x) is irreducible over Q whenever n has no squared prime factor.

Theorem 3.6. Let n be a square-free integer, meaning that n does not have

any squared prime factor. Then Jn,H(x) is irreducible over Q for any subgroup

H of Z∗
n.

Proof. Let H be a subgroup of Z∗
n and ξ =

∑

h∈H wh. Suppose that P (x)
is the minimal polynomial of ξ over Q. Note that P (x) is also the minimal
polynomial of ai, i = 1, . . . , l, since each ai can be expressed as ai = σ(ξ) for
some σ ∈ Gal(Q(w)/Q). Hence, Jn,H(x) = (x−a1) · · · (x−al) divides (P (x))l.
This allows us to express Jn,H(x) as Jn,H(x) = (P (x))k for some positive
integer k. Then k times the sum of all zeros of P (x) is equal to

∑

k∈Z∗

n

wk

whose value is 1 or −1. We proved in Theorem 2.3 that the sum of all zeros
of P (x) is an integer. Therefore k must be 1, implying that Jn,H(x) is the
miminal polynomial of ξ over Q. �
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