DOI QR코드

DOI QR Code

동충하초균주로 발효한 감초의 주요성분 함량 변화 및 NO 생성 억제 효과

Changes in Cordycepin and Liquiritigenin Content and Inhibitory Effect on NO Production in Fermented Licorice and Dongchunghacho

  • 왕자옥 (부산대학교 원예생명과학과) ;
  • 이매 (부산대학교 원예생명과학과) ;
  • 이커 (부산대학교 원예생명과학과) ;
  • 손병구 (부산대학교 원예생명과학과) ;
  • 강점순 (부산대학교 원예생명과학과) ;
  • 이용재 (부산대학교 원예생명과학과) ;
  • 박영훈 (부산대학교 원예생명과학과) ;
  • 김선태 (부산대학교 식물생명과학과) ;
  • 정재철 ((주)노바렉스) ;
  • 이영근 (부산대학교 식품공학과) ;
  • 최영환 (부산대학교 원예생명과학과)
  • Wang, Ziyu (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Li, Mei (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Li, Ke (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Son, Beung Gu (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Kang, Jum Soon (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Young Hoon (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Yong Jae (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Kim, Sun Tae (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Jung, Jae-Chul (NOVAREX Co., Ltd.) ;
  • Lee, Young Guen (Department of Food Science and Technology, College of Natural Resources and Life Science, Pusan National University) ;
  • Choi, Young Whan (Department of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
  • 투고 : 2016.10.20
  • 심사 : 2016.11.08
  • 발행 : 2017.01.30

초록

약용식물의 발효는 새로운 식품의 소재 개발이 가능하나, 발효 균주는 대부분 이스트, 유산균, 박테리아 등이 이용되고 있다. 본 연구에서는 감초와 번데기 단독 또는 감초에 발효원인 번데기를 20%와 50%로 첨가한 혼합물의 배지에 눈꽃 동충하초(Paecilomyces tenuipes)와 밀리타리스 동충하초(Cordyceps militaris)를 이용하여 고체배양방법을 확립하였다. 동충하초 발효물을 식품소재로 개발하기 위하여 식용 가능한 용매인 에탄올 95%, 70%, 50%, 25% 및 물로서 추출한 다음 동충하초로부터 생성된 cordycepin과 감초의 지표성분인 liquiritin, liquiritigenin과 glycirrhizin의 함량 및 NO생성 억제효과를 조사하였다. Cordycepin함량은 감초에 번데기를 50%로 혼합한 배지에 밀리타리스 동충하초 균주을 접종하여 발효한 발효물을 70% EtOH추출하였을 경우에 가장 많았으며, 번데기를 첨가하지 않은 밀리타리스 동충하초 발효물 추출물보다 함량이 33배 정도 증가하였다. 또한 추출용매의 극성이 70% EtOH보다 높거나 낮아지면 감소하는 경향이었으며, 특히 발효원으로서 번데기의 첨가는 cordycepin의 함량을 현저하게 증가시켰다. Liquiritin의 함량은 발효하지 않은 감초보다 눈꽃 동충하초와 밀리타리스 동충하초로 발효한 모든 추출물에서 감소하였다. Liquiritigenin의 함량은 눈꽃 동충하초로 발효한 추출물이 밀리타리스 동충하초 발효 추출물보다 현저히 증가하였으나, 밀리타리스 동충하초 균쥬의 발효 추출물은 발효하지 않은 감초 추출물과 거의 차이가 없었으며, 두 균주 모두 번데기의 첨가량이 증가할수록 liquiritigenin의 함량이 감소하는 경향이었다. 감초에 번데기의 첨가량 또는 추출 용매의 극성이 증가하면 liquiritin과 glycyrrhizin의 함량은 현저히 감소하였다. 이상의 결과로부터, cordycepin 함량은 C. militaris 균주로 liquiritigenin은 P. tenuipes로 발효시에 현저하게 증가하였으나, liquiritin과 glycyrrhizin은 감소하였다. 감초를 동충하초로 발효시에 번데기의 첨가는 주요 성분의 변화를 현저하게 유도하였다. 동충하초 발효 추출물은 NO생성 억제효과가 증가하였으며, 고극성 용매 추출물에서 그 효과가 현저하였다. 감초의 발효시에 생성된 cordycepin과 liquiritin, liquiritigenin 및 glycyrrhizin의 함량은 발효원으로서 첨가되는 번데기, 추출용매의 극성, 발효 균주의 종류 등에 따라서 현저한 차이가 있었다. 이러한 결과는 동충하초 균주를 이용한 기능성 식품 소재를 개발하기 위한 기초 자료로서 활용이 가능할 것으로 기대된다.

Traditional Korean fermented herbal plants are potential sources of new food that promote health, but they are still produced by yeast, fungi or bacteria fermentation. In the present work, mushroom (Paecilomyces tenuipes and Cordyceps militaris) fungal dongchunghacho were used to fermented Glycyrrhiza uralensis Fischer (licorice) or mixed with pupa. The pupa were tested as solid substrates for the production of corcycepin, liquiritin, and liquiritigenin. The fermented substrates were analyzed the content of cordycepin, liquiritin, liquiritigenin, and glycirrhizin productivity and inhibitory activity of NO. The cordycepin content of 70% EtOH extract from the fermented mixture of licorice and 50% pupa with C. militaris increased maximum at 33 times. Pupa was very excellent for the production of cordycepin. The liquiritin content was decreased in all the assays inoculated with P. tenuipes and C. militaris dongchunghachos. The liquiritigenin content was higher when fermented with P. tenuipes than C. militaris. The addition of pupa significantly reduced the liquiritin content and glycyrrhizin production. As a result, the liquiritigenin content increased in fermented P. tenuipes and C. militaris, and liquiritin and glycyrrhizin decreased. The inhibition of NO production in the different ethanolic extracts fermented with licorice and pupa was also significantly increased and higher than that of a nonfermented extract in higher polar solvent extracts. The contents of cordycepin and biological active compounds were altered in accordance with the concentration of pupa and fungi. This study provides basic data for use in developing dongchunghacho fungi as a functional food resource.

키워드

참고문헌

  1. Ahn, H. Y., Park, K. R., Yoon, K. H., Lee, J. Y. and Cho, Y. S. 2016. Biological activity and chemical characteristics of Cordyceps militaris powder fermented by several microscopic organisms. J. Life Sci. 25, 197-205.
  2. Alessandra, M., Antonella, D. L., Isabella, D. L., Cesare, P. and Mario, D. R. 2002. Enzymatic production of 18-${\beta}$-glycyrrhetinic acid from Glycyrrhiza glabra L. Biotech. Let. 24, 1907-1911. https://doi.org/10.1023/A:1020904325906
  3. Asl, M. N. and Hosseinzadeh, H. 2008. Review of pharmacological effects of Glycyrrhiza sp, and its bioactive compounds. Phytother. Res. 22, 709-724. https://doi.org/10.1002/ptr.2362
  4. Chang, S. T., Chen, P. F. and Chang, S. C. 2001. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J. Ethnopharmacol. 77, 123-127. https://doi.org/10.1016/S0378-8741(01)00273-2
  5. Cho, H. J., Cho, J. Y., Rhee, M. H., Kim, H. S., Lee, H. S. and Park, H. J. 2007. Inhibitory effects of cordycepin (3'-deoxyadenosine), a component of Cordyceps militaris, on human platelet aggregation induced by thapsigargin. J. Microbiol. Biotechnol. 17, 1134-1138.
  6. Choi, H. J., Lee, W. J., Park, S. H., Song, B. W., Kim, D. H. and Kim, N. J. 2005. Studies on the processing of crude drugs (IX) - Preparing standardization and regulation of stir-frying Glycyrrhziae root (1). Kor. J. Pharmacogn. 36, 209-219.
  7. Chung, W. T., Lee, S. H., Cha, M. S., Sung, N. S., Hwang, B. and Lee, H. Y. 2001. Biological activities in roots of Glycyrrhiza uralensis Fisch. Kor. J. Med. Crop Sci. 9, 45-54.
  8. Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949.
  9. Fenwick, G., Lutomski, J. and Nieman, C. 1990. Liquorice Glycyrrhiza glabra L.-Composition uses and analysis. Food Chem. 38, 119-143. https://doi.org/10.1016/0308-8146(90)90159-2
  10. Hatano, T., Kagawa, H., Yasuhara, T. and Okuda, T. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36, 2090-2097. https://doi.org/10.1248/cpb.36.2090
  11. Jo, S. J., Lee, T. H., Chae, D. H. and Han, Y. H. 2004. Optimization of culture and media composition on the production of cordycepin by Cordyceps militaris. Kor. J. Microbiol. 40, 217-220.
  12. Kim, S. C., Byun, S. H., Yang, C. H., Kim, C. Y., Kim, J. W. and Kim, S. G. 2004. Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage). Toxicology 197, 239-251. https://doi.org/10.1016/j.tox.2004.01.010
  13. Kim, S. I., Kim, J. E., So, J. H., Rhee, I. K., Chung, S. K., Lee, K. B., Yoo, Y. C. and Song, K. S. 2004. Changes in liquiritigenin contents in licorice extract treated by the crude enzyme extract from Aspergillus kawachii. Kor. J. Pharmacogn. 35, 309-314.
  14. Kiso, Y., Tohin, M., Ino, H., Hattori, M., Saamoto, T. and Namba, T. 1984. Mechanism of antihepatotoxin activity of glycyrrhizin. Effect on free radical generation and lipid peroxidation. Planta Medica. 50, 298-302. https://doi.org/10.1055/s-2007-969714
  15. Ko, B. S., Lu, Y. J., Yao, W. L., Liu, T. A., Tzean, S. S., Shen, T. L. and Liou, J. Y. 2013. Cordycepin regulates GSK-$3{\beta}$/${\beta}$-catenin signaling in human leukemia cells. PLOS ONE 8, e76320. https://doi.org/10.1371/journal.pone.0076320
  16. Kumagai, A., Nanabosh, M., Asanuma, Y., Yagur, T. and Nishino, K. 1967. Effect of glycyrrhizin on thymolytic and immuno-suppressive action of cortisone. Endocrinol. Jpn. 14, 39-42. https://doi.org/10.1507/endocrj1954.14.39
  17. Lee, J. W., Ji, Y. J., Yu, M. H., Bo, M. H., Seo, H. J., Lee, S. P. and Lee, I. S. 2009. Antimicrobial effect and resistant regulation of Glycyrrhiza uralensis on methicillin-resistant Staphylococcus aureus. Nat. Prod. Res. 23, 101-111. https://doi.org/10.1080/14786410801886757
  18. Liang, Y. L., Liu, Y., Yang, J. W. and Liu, C. X. 1997. Studies on pharmacological activities of cultivated Cordyceps sinensis. Phytotheraphy Res. 11, 237-241. https://doi.org/10.1002/(SICI)1099-1573(199705)11:3<237::AID-PTR49>3.0.CO;2-2
  19. Muller, W. E., Weiler, B. E., Charubala, R., Pfleiderer, W., Leserman, L., Sobol, R. W., Suhadolnik, R. J. and Schroder, H. C. 1991. Cordycepin analogues of 2',5'-oligo-adenylate inhibition of reverse transcriptase. Biochemistry 30, 2027-2033. https://doi.org/10.1021/bi00222a004
  20. Na, I. S., Park, M. J., Noh, C. H., Min, J. W., Bang, M. H. and Yang, D. C. 2008. Production of flavonoid aglycone from Korean Glycyrrhizae Radix by biofermentation process. Kor. J. Orient. Physiol. Pathol. 22, 569-574.
  21. Nakamura, K., Shinozuka, K. and Yoshikawa, N. 2015. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J. Pharmacol. Sci. 127, 53-56. https://doi.org/10.1016/j.jphs.2014.09.001
  22. Nemeth, K., Plumb, G. W., Berrin, J. G., Juge, N., Jacob, R., Naim, H. Y., Williamson, G., Swallow, D. M. and Kroon, P. A. 2003. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in human. Eur. J. Nutr. 42, 29-42. https://doi.org/10.1007/s00394-003-0397-3
  23. Nishino, H., Yoshioka, K., Iwashima, A., Takiziwa, H., Konoshi, S., Okamoto, H., Okabe, H., Shibata, S., Fujiki. H. and Sugimura, T. 1986. Glycyrrhetic acid inhibits tumorpromoting activity of teleocidin and 12-O-tetradecanoylphorbol-13-actate in two- stage mouse skin carcinogenesis. J. Cancer Res. 77, 8-33.
  24. Park, E. Y., Park, J. S., Lee, J. R., Jee, S. Y. Byun, S. H. and Kim, S. C. 2007. Cytoprotective effects of liquiritigenin, a component of licorice, against lead-induced cytotoxicity in PC-12 cells. Kor. J. Herbology 22, 17-24.
  25. Park, J. S., Park, S. H., Oh, I. S., Chang, Y. N., Bang, K. S., Byeon, E. J. and Lee, J. H. 2013. A comparative study of physiological activity of Glycyrrhiza uralensis Fischer stems and leaves by processing methods. Kor. J. Plant Res. 26, 539-547. https://doi.org/10.7732/kjpr.2013.26.5.539
  26. Pompei, R., Flore, O., Marcialis, M. A. and Loddo, B. 1979. Glycyrrhizic acid inhibits virus growth and activates virus particles. Nature 281, 689-690. https://doi.org/10.1038/281689a0
  27. Sim, H. K., Hoang, S. W., Baek, B. S. and Bae, M. J. 1996. Effect of Glycyrrhiza glabrs extracts on Immune response. Life Res. Indus. 1, 5-13.
  28. Shon, M. Y. 2007. Antioxidant and anticancer activities of Poria cocos and Machilus thunbergii fermented with mycelial mushrooms. Food Indus. Nutr. 12, 51-57.
  29. Sohn, E. J., Kang, D. G., Lee, A. S., Lee, Y. M., Yin, M. H., Yeum, K. B. Noh, S. Y. and Lee, H. S. 2003. Antioxidant activities of glycyrrhizin and its effect on renal expression of Na, K-ATPase in gentamicin-induced acute renal failure rats. J. Physiol. Pathol. Kor. Med. 17, 542-548.
  30. Suhr, S. S. and Jung, S. K. 2009. Antiviral effects of fermented Lonicerae flos on A type influenza virus. Kor. J. Orient. Int. Med. 30, 465-480.
  31. Tsukahara, M., Shinzato, N., Tamaki, Y., Namihira, T. and Matsui, T. 2009. Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production. Appl. Biochem. Biotechnol. 158, 476-482. https://doi.org/10.1007/s12010-009-8553-8
  32. Um, Y. R., Shim, K. S., Lee, J. H., Park, H. Y. and Ma, J. Y. 2009. Quantitative analysis of glycyrrhizic acid in fermented Glycyrrhizae radix by HPLC. Kor. J. Orient. Med. 15, 85-89.
  33. Zheng, Y. F., Wei, J. H., Fang, S. Q., Tang, Y. P., Cheng, H. B., Wang, T. L., Li, C. Y. and Peng, G. P. 2015. Hepatoprotective triterpene saponins from the roots of Glycyrrhiza inflata. Molecules 20, 6273-6283. https://doi.org/10.3390/molecules20046273
  34. Zhu, J. S., Halpern, G. M. and Jones, K. 1998. The scientific rediscovery of an ancient Chinese herbal medicine, Cordyceps sinensis Part I. J. Altern. Complement Med. 4, 289-303. https://doi.org/10.1089/acm.1998.4.3-289