DOI QR코드

DOI QR Code

당뇨 마우스에서 cyanidin-3-O-glucoside의 식후 고혈당 완화 효과

Cyanidin-3-O-glucoside Ameliorates Postprandial Hyperglycemia in Diabetic Mice

  • 최경하 (부산대학교 식품영양학과) ;
  • 최성인 (부산대학교 식품영양학과) ;
  • 박미화 (신라대학교 식품영양학과) ;
  • 한지숙 (부산대학교 식품영양학과)
  • Choi, Kyungha (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Choi, Sung-In (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Park, Mi Hwa (Department of Food and Nutrition, College of Medical and Life Science, Silla University) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University)
  • 투고 : 2016.07.29
  • 심사 : 2016.11.03
  • 발행 : 2017.01.30

초록

Cyanidin-3-O-glucoside (C3G)는 오디와 붉은색의 과일에 풍부하게 함유되어 있으며, 항염증과 항산화 효과와 관련하여 보고되어있다. 그러나, C3G의 식후 혈당에 관한 연구 결과는 보고되지 않았다. ${\alpha}-glucosidase$ 억제제는 소장에서 탄수화물 소화의 속도를 방해함으로써 식후 고혈당을 조절한다. 본 연구에서는 C3G가 ${\alpha}$-글루코시다아제와 ${\alpha}$-아밀라아제에 미치는 억제효과 및 스트렙토조토신(STZ)이 유발하는 당뇨병 생쥐의 식후고혈당에 미치는 완화 효과를 조사하였다. ICR 마우스와 streptozothocin (STZ)으로 유도된 당뇨병 마우스에 수용성 전분(2 g/kg body weigh)으로 경구부하 후 C3G (10 mg/kg body weight) 또는 acarbose (10 mg/kg body weight)를 단독 또는 함께 투여하였다. 혈액 샘플은 꼬리에서 0, 30, 60, 120분 간격으로 채취하였다. ${\alpha}$-글루코시다아제와 ${\alpha}$-아밀라아제에 대한 C3G의 $IC_{50}$ 값은 각각 13.72와 $7.5\;{\mu}M$의 결과값을 나타내어, 양성대조군인 acarbose보다 더 효과적이었다. STZ으로 유발된 당뇨 쥐의 식후 혈당 수치는 대조군에 비해 C3G 투여시 유의적으로 더 낮았다. 게다가, C3G 투여는 당뇨병 흰쥐에서 포도당 반응에 대한 곡선하면적 감소와 관련이 있었다. 그러므로, C3G는 ${\alpha}$-글루코시다아제의 강력한 억제제이며 식이 탄수화물의 흡수를 지연시킬 수 있음을 나타낸다.

Cyanidin-3-O-glucoside (C3G) shows anti-inflammatory and antioxidant effects; however, its effect on postprandial blood glucose levels remains unknown. Alpha-glucosidase inhibitors regulate post-prandial hyperglycemia by impeding carbohydrate digestion in the small intestine. Here, the effect of C3G on ${\alpha}-glucosidase$ and ${\alpha}-amylase$ inhibition and its ability to ameliorate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice were evaluated. ICR normal and STZ-induced diabetic mice were orally administered soluble starch alone or with C3G or acarbose. The half-maximal inhibitory concentrations of C3G for ${\alpha}-glucosidase$ and ${\alpha}-amylase$ were 13.72 and $7.5{\mu}M$, respectively, suggesting that C3G was more effective than acarbose. The increase in postprandial blood glucose levels was more significantly reduced in the C3G groups than in the control group for both diabetic and normal mice. The area under the curve for the diabetic mice was significantly reduced following C3G administration. C3G may be a potent ${\alpha}-glucosidase$ inhibitor and may delay dietary carbohydrate absorption.

키워드

참고문헌

  1. Adisakwattana, S., Yibchok-Anun, S., Charoenlertkul, P. and Wongsasiripat, N. 2010. Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal ${\alpha}$-glucosidase. J. Clin. Biochem. Nutr. 49, 36-41.
  2. Akkarachiyasit, S., Charoenlertkul, P., Yibchok-anun, S. and Adisakwattana, S. 2010. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal ${\alpha}$-glucosidase and pancreatic ${\alpha}$-amylase. Int. J. Mol. Sci. 11, 3387-3396. https://doi.org/10.3390/ijms11093387
  3. Baron, A. D. 1998. Postprandial hyperglycaemia and alpha-glucosidase inhibitors. Diabetes Res. Clin. Pract. 40, S51-55. https://doi.org/10.1016/S0168-8227(98)00043-6
  4. Borona, E. and Muggeo, M. 2001. Postprandial blood glucose as a risk factor for cardiovascular disease in type 2 diabetes: the epidemiological evidence. Diabetologia 44, 2107-2114. https://doi.org/10.1007/s001250100020
  5. David, Bell., O'Keefe, J. and Jellinger, P. 2008. Postprandial dysmetabolism: the missing link between diabetes and cardiovascular events? Endocr. Pract. 14, 112-124. https://doi.org/10.4158/EP.14.1.112
  6. Derosa, G. and Maffioli, P. 2012. ${\alpha}$-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 8, 899-906.
  7. Ergul, A. 2011. Endothelin-1 and diabetic complications: focus on the vasculature. Pharmacol. Res. 163, 477-482.
  8. Fu, Y., Wei Z., Zhou, E., Zhang, N. and Yang, Z. 2014. Cyanidin-3-O-${\beta}$-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model. J. Lipid Res. 21, 1111-1119.
  9. Galvano, F., La Fauci, L., Vitaglione P., Fogliano, V., Vanella, L. and Felgines, C. 2007. Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Ann. Ist. Super Sanita. 43, 382-393.
  10. Ghosh, D. and Konishi, T. 2007. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr. 16, 200-208.
  11. Graf, D., Seifert, S., Jaudszus, A., Bub, A. and Watzl, B. 2013. Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats. PLoS. One 18, e66690.
  12. Huang, W. Y., Liu, Y. M., Wang, J., Wang, X. N. and Li, C. Y. 2014. Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells. Molecules 21, 12827-12841.
  13. Yamagishi, S., Nakamura, K. and Takeuchi, M. 2004. Inhibition of postprandial hyperglycemia by acarbose is a promising therapeutic strategy for the treatment of patients with the metabolic syndrome. Med. Hypotheses 65, 152-154.
  14. Jovanovic, L. 1999. Rationale for prevention and treatment of postprandial glucose-mediated toxicity. Endocrinologist 9, 87-92. https://doi.org/10.1097/00019616-199903000-00004
  15. Katahira, H. and Ishida, H. 2002. Indication and side effect of alpha glucosidase inhibitor. Nihon Rinsho 60, 399-408.
  16. Kim, J. S. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J. Kor. Med. Sci. 33, 1133-1138.
  17. Laakso, M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48, 937-942. https://doi.org/10.2337/diabetes.48.5.937
  18. Lebovitz, H. E. 1997. Alpha-Glucosidase inhibitors. Endocrinol. Metab. Clin. North. Am. 26, 539-551. https://doi.org/10.1016/S0889-8529(05)70266-8
  19. Lee, B. H., Eskandari R., Jones, K., Reddy, K. R., Roberto, Q. C., Nichols, B. L., David, R. R., Hamaker, B. R. and Mario Pinto, B. 2012. Modulation of starch digestion for slow glucose release through "Toggling" of activities of Mucosal ${\alpha}$-Glucosidases. J. Biol. Chem. 287, 31929-31938. https://doi.org/10.1074/jbc.M112.351858
  20. Madsbad, S., Brock, B., Schmitz, O. and Ugeskr, L. 2003. Postprandial blood glucose fluctuations, cardiovascular disease and late diabetic complications. Ugeskr. Laeg. 165, 3149-3153.
  21. Moradi-Afrapoli, F., Asghari, B., Saeidnia, S., Ajani, Y., Mirjani, M., Malmir, M., Bazaz, R. D., Hadjiakoondi, A., Salehi, P., Hamburger, M. and Yassa, N. 2012. In vitro ${\alpha}$-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU 20, 37. https://doi.org/10.1186/2008-2231-20-37
  22. Sama, K., Murugesan, K. and Sivaraj, R. 2012. In vitro alpha amylase and alpha glucosidase inhibition activity of crude ethanol extract of Cissus arnottiana. Asian J. Plant Sci. Res. 14, 550-553.
  23. Sheng, Z., Dai, H., Pan, S., Wang, H., Hu, Y. and Ma, W. 2014. Isolation and Characterization of an ${\alpha}$-Glucosidase Inhibitor from Musa spp. (Baxijiao) Flowers. Molecules 9, 10563-10573.
  24. Special, A., Cimino, F., Saija, A., Canali, R. and Virgili, F. 2014. Bioavailability and molecular activities of anthocya nins as modulators of endothelial function. Genes. Nutr. 9, 404. https://doi.org/10.1007/s12263-014-0404-8
  25. Sun, C. D., Zhang, B., Zhang, J. K., Xu, C. J., Wu, Y. L., Li, X. and Chen, K. S. 2012. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic ${\beta}$ cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J. Med. Food 15, 288-298. https://doi.org/10.1089/jmf.2011.1806
  26. Tarling, C. A., Woods, K., Zhang, R., Brastianos, H. C., Brayer, G. D., Andersen, R. J. and Withers, S. G. 2008. The search for novel human pancreatic alpha-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. Chembiochem 15, 433-438.
  27. Toma, A., Makonnen, E., Mekonnen, Y., Debella, A. and Addisakwattana, S. 2014. Intestinal ${\alpha}$-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves. BMC Complement Altern. Med. 14, 180. https://doi.org/10.1186/1472-6882-14-180
  28. Tsuda, T., Horio, F. and Osawa, T. 1998. Dietary cyanidin 3-O-${\beta}$-D-glucoside increases ex vivo oxidation resistance of serum in rats. Lipids 33, 583-588. https://doi.org/10.1007/s11745-998-0243-5
  29. Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., Van de Lisdonk, E. H., Rutten Guy, E. and Van Weel, C. 2005. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 28, 154-163. https://doi.org/10.2337/diacare.28.1.154
  30. Wang, L. S., Kuo, C. T., Cho, S. J., Seguin, C., Siddiqui, J., Stoner, K., Weng, Y. I., Huang, T. H., Tichelaar, J., Yearsley, M., Stoner, G. D. and Huang, Y. W. 2013. Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells. Nutr. Cancer 65, 118-25. https://doi.org/10.1080/01635581.2013.741759
  31. Watanabe, J., Kawabata, J., Kurihara, H. and Niki, R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177-178. https://doi.org/10.1271/bbb.61.177

피인용 문헌

  1. Assessment of Nutritional Components, Antioxidant Contents and Physiological Activity of Purple Corn Husk and Cob Extracts vol.33, pp.6, 2018, https://doi.org/10.13103/JFHS.2018.33.6.500