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Abstract

In this paper we study pooling effects in Bayesian testing procedures of indepen-
dence for contingency tables from small areas. In small area estimation setup, we typi-
cally use a hierarchical Bayesian model for borrowing strength across small areas. This
techniques of borrowing strength in small area estimation is used to construct a Bayes
test of independence for contingency tables from small areas. In specific, we consider
the methods of direct or indirect pooling in multinomial models through Dirichlet pri-
ors. We use the Bayes factor (or equivalently the ratio of the marginal likelihoods)
to construct the Bayes test, and the marginal density is obtained by integrating the
joint density function over all parameters. The Bayes test is computed by performing a
Monte Carlo integration based on the method proposed by Nandram and Kim (2002).
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1. Introduction

In many surveys, there are several small areas and a contingency table is constructed for
each area. We consider a hierarchical Dirichlet-multinomial model to analyze the counts from
these small areas. Our concern is to perform a test of independence which is competitive
to the chi-square test for a single table. We follow a Bayesian inferential procedure so that
appropriate priors are needed.

Statistical inference for small areas requires considerable care because the sample sizes for
small areas are usually very small. To solve this problem, we use a hierarchical model which
is to borrow strength some information from the neighboring areas. In this paper, we use the
hierarchical Bayesian model to study the pooling effects in Bayesian tests of independence
for contingency tables from small areas.

There are several literatures on methods for pooling of data. Malec and Sedransk (1992)
developed a Bayesian procedure for estimation of the means for the specified experiments
among a set of seemingly similar experiments. The proposed flexible prior distribution allows
the intensity and nature of the pooling to be influenced by the sample data. Evans and
Sedransk (1999) proposed an alternative Bayesian model with covariates that is more flexible.
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Evans and Sedransk (2003) provided a fully Bayesian justification for the results in Malec
and Sedransk.

There is a wide literature on Bayesian methods for analyzing data with contingency ta-
bles. Agresti and Hitchcock (2005) surveyed Bayesian methods for categorical data analysis,
with emphasis on contingency table analysis. The general concern with hierarchical Bayesian
approach to contingency table analysis is how to handle the hyperparameters. In Dirichlet-
multinomial model, Leonard (1977) made approximations when deriving the posterior to
account for hyperparameter uncertainty. By contrast, Nandram (1998) used the Metropolis-
Hastings algorithm to sample from the posterior distribution, rendering Leonard’s approx-
imation unnecessary. Recently hierarchical Bayesian models in the contingency tables from
small areas with nonresponses have been studied in Woo and Kim (2015, 2016).

In this paper, we will construct Bayesian tests of independence using a hierarchical multi-
nomial model with Dirichlet priors. We will investigate the pooling effects in Bayes factors
through the three different types of pooling strategies for Dirichlet priors; no pooling, com-
plete pooling and adaptive pooling. In Section 2, we introduce the hierarchical Bayesian
models under the three different types of pooling strategies for the test of independence.
Then we obtain the corresponding three Bayes factors using the marginal likelihoods. In
Section 3, we present the results of numerical study with some simulated data. Finally, we
provide some discussion and concluding remarks in Section 4.

2. Hierarchical Bayesian models

2.1. General models

For the sth area of S small areas, we consider the r × c contingency tables with cell
counts, nsjk, which are the responses for the kth column and jth row in the sth area. Let
πsjk denote the corresponding probabilities of each unit cell in the sth area. When psj and
qsk are marginal probabilities for each column and each row in the sth area, the independence
models have πsjk = psjqsk, j = 1, · · · , r, k = 1, · · · , c, where

∑r
j=1 psj = 1 and

∑c
k=1 psk = 1

for s = 1, · · · , S. Let nsi, i = 1, · · · , I (= rc) denote the cell counts for the sth area and πsi
denote the corresponding probabilities of each area. We assume that

ns|πs
ind∼ Multinimial(ns,πs), s = 1, · · · , S (2.1)

where ns = (ns1, · · · , nsI) for s = 1, · · · , S is the vector of responses with ns =
∑I
i=1 nsi,

total sum of responses, and πs = (πs1, · · · , πsI) is the corresponding probability vector

of each area with
∑I
i=1 πsi = 1. Here I is denoted by the number of cells for the table

corresponding to each area.
Now we consider three types of pooling strategies for the general model (2.1).

1) No pooling, πs
iid∼ Dirichlet(1), s = 1, · · · , S;

2) Complete pooling, π̃ ∼ Dirichlet(1) with π1 = · · · = πS = π̃;

3) Adaptive pooling, πs
iid∼ Dirichlet(µτ),

where µ = (µ1, · · · , µK), 0 ≤ µk ≤ 1,
∑K
k=1 µk = 1 and τ > 0 are hyperparameters

for Dirichlet distribution and are assumed to have the noninformative and proper prior
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π(µ, τ) = (K − 1)!/(1 + τ)2. This prior is very similar to a half-Cauchy prior and can pre-
vent overestimation of scale parameters from our models. Recall that x|µ, τ ∼ Dirichlet(µτ)

has the density f(x|µ, τ) =
∏k
i=1 x

µiτ−1
i /D(µτ), 0 < xi < 1,

∑k
i=1 xi = 1 where D(µτ) =∏k

i=1 Γ(µiτ)/Γ(τ), 0 < µi < 1, τ > 0, is the Dirichlet function, also known as the multivari-
ate Beta function.

Under no pooling, the joint density function for all variables is

π(n,π) =

S∏
s=1

{f(ns|πs)π(πs)} =

S∏
s=1

{ ns!∏I
i=1 nsi!

I∏
i=1

πnsi
si (I − 1)!

}
,

where n = (n1, · · · ,nS) and π = (π1, · · · ,πS). In no pooling, we could not obtain any
information from prior distribution. For the marginal likelihood, we can use the posterior
density of πs given ns,

πs | ns
ind∼ Dirichlet(ns + 1), s = 1, · · · , S.

So we obtain the marginal likelihood for the sth area,

f(ns) =
ns!(I − 1)!∏I

i=1 nsi!

∏I
i=1 Γ(nsi + 1)

Γ(
∑I
i=1 nsi + I)

.

Under complete pooling, the joint density function is

π(n, π̃) =

S∏
s=1

{f(ns|π̃)}π(π̃) =

S∏
s=1

{ ns!∏I
i=1 nsi!

I∏
i=1

π̃nsi
i

}
(I − 1)!

where π̃ = (π̃1, · · · , π̃I). The parameter π̃ is shared by the data in entire areas. Then we
can calculate the marginal likelihood using the posterior density of π̃ which is the Dirichlet
distribution with parameter

∑S
s=1 ns + 1. Our marginal likelihood under complete-pooling

is

f(n) =

∏S
s=1 ns!(I − 1)!∏S
s=1

∏I
i=1 nsi!

∏S
s=1

∏I
i=1 Γ(nsi + 1)

Γ(
∑S
s=1

∑I
i=1 nsi + I)

where Γ(t) =
∫∞
0
xt−1e−xdx is the gamma function. In complete pooling, the data are tied

by interested parameter π̃, so our marginal likelihood for entire areas is expressed in just
one equation. The idea of complete-pooling can be a contrast to no-pooling case.

Under adaptive pooling, the joint density function for all variables is

π(n,π,µ, τ) =

S∏
s=1

{ ns!∏I
i=1 nsi!

I∏
i=1

πnsi
si

1

D(µτ)

I∏
i=1

πµiτ−1
si

} (I − 1)!

(1 + τ)2
.

Here we need to know the posteriors for all parameters to be integrated out in the joint
density function. The posterior density of πs, s = 1 · · · , S under adaptive-pooling is

πs | ns,µ, τ
ind∼ Dirichlet(ns + µτ), s = 1, · · · , S;
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π(µ, τ | n) ∝
S∏
s=1

{ I∏
i=1

D(ns + µτ)

D(µτ)

} 1

(1 + τ)2
.

Each area has separate parameter vector πs for s = 1, · · · , S. However, the data in all
areas is indirectly pooled by hyper-parameters µ and τ . Using these posteriors, we obtain
the marginal likelihood

f(ns) =
(I − 1)!ns!∏I

i=1 nsi!

∫
µ

∫
τ

D(µτ + ns)

D(µτ)(1 + τ)2
dµdτ, s = 1 · · · , S.

For the computation of this marginal likelihood, we can use the method developed by Nan-
dram and Kim (2002). They use an importance function which exploits the multiplication
rule of probability, and is appropriate for any hierarchical model.

2.2. Independence models

Let nsjk, j = 1, · · · , r, k = 1, · · · , c, be the cell counts for jth row and kth column in sth
area, s = 1, · · · , S with corresponding cell probability πsjk = psjqsk where psj =

∑c
k=1 πsjk

and qsk =
∑r
j=1 πsjk. We assume that

ns|ps, qs
ind∼ Multinomial(ns, vec(psq

′
s)), s = 1, . . . , S (2.2)

where ns = (ns11, · · · , ns1c, · · · , nsr1, · · · , nsrc), ns =
∑r
j=1

∑c
k=1 nsjk, ps = (ps1, · · · , psr),

qs = (qs1, · · · , qsc),
∑r
j=1 psj = 1, and

∑c
k=1 qsk = 1.

For the independence model (2.2), we consider no pooling

ps
iid∼ Dirichlet(1p);

qs
iid∼ Dirichlet(1q).

Under no pooling, the joint density function for all variables is

π(ns,ps, qs) =
ns!∏r

j=1

∏c
k=1 nsjk!

r∏
j=1

c∏
k=1

(psjqsk)nsjk(r − 1)!(c− 1)!, s = 1, . . . , S.

Then the marginal likelihood for the sth area is

f(ns) = (r − 1)!(c− 1)!
ns!∏r

j=1

∏c
k=1 nsjk!

∫
ps

r∏
j=1

p
nsjk

sj dps

∫
qs

c∏
k=1

q
nsjk

sk dqs.

Using the posterior distributions,

ps | n(1)
s

ind∼ Dirichlet(n(1)
s + 1) and qs | n(2)

s
ind∼ Dirichlet(n(2)

s + 1),

where n
(1)
s = (n

(1)
s1 , · · · , n

(1)
sr ), n

(1)
sj =

∑c
k=1 nsjk, j = 1, · · · , r, n(2)

s = (n
(2)
s1 , · · · , n

(2)
sc ), n

(2)
sk =∑r

j=1 nsjk, k = 1, · · · , c, we obtain the marginal likelihood

f(ns) = (r − 1)!(c− 1)!
ns!∏r

j=1

∏c
k=1 nsjk!

∏r
j=1 Γ(n

(1)
sj + 1)

∏c
k=1 Γ(n

(2)
sk + 1)

Γ(
∑r
j=1 n

(1)
sj + r)Γ(

∑c
k=1 n

(2)
sk + c)

.
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Under no pooling, the Bayes factor (BF) of the general model versus the independence
model for the sth area is

BF 1
s =

(rc− 1)!
∏r
j=1

∏c
k=1 Γ(nsjk + 1)Γ(

∑r
j=1 n

(1)
sj + r)Γ(

∑c
k=1 n

(2)
sk + c)

(r − 1)!(c− 1)!Γ(
∑r
j=1

∑c
k=1 nsjk + I)

∏r
j=1 Γ(n

(1)
sj + 1)

∏c
k=1 Γ(n

(2)
sk + 1)

.

Next, we consider complete pooling for the independence model,

p1 = · · · = pS = p ∼ Dirichlet(1p);

q1 = · · · = qS = q ∼ Dirichlet(1q),

where p = (p1, · · · , pr), q = (q1, · · · , qc). Under complete pooling, the joint density function
for all variables is

π(n,p, q) =

S∏
s=1

ns!∏r
j=1

∏c
k=1 nsjk!

r∏
j=1

c∏
k=1

(pjqk)nsjk(r − 1)!(c− 1)!, s = 1, . . . , S.

Then the marginal likelihood is

f(n) =

∫
p

∫
q

S∏
s=1

ns!∏r
j=1

∏c
k=1 nsjk!

r∏
j=1

c∏
k=1

(pjqk)nsjk(r − 1)!(c− 1)!dpdq.

Using the posterior distributions,

p | n(1) ∼ Dirichlet(

S∑
s=1

n(1)
s + 1) and q | n(2) ∼ Dirichlet(

S∑
s=1

n(2)
s + 1),

where n(1) =(n
(1)
1 , · · · ,n(1)

S ), n
(1)
s =

∑c
k=1 nsjk, n(2) =(n

(2)
1 , · · · ,n(2)

S ), n
(2)
s =

∑r
j=1 nsjk, we

have the marginal density as follows.

f(n) =
(r − 1)!(c− 1)!

∏S
s=1 ss!∏S

s=1

∏r
j=1

∏c
k=1 nsjk!

∏r
j=1 Γ(

∑S
s=1 n

(1)
sj + 1)

∏c
k=1 Γ(

∑S
s=1 n

(2)
sk + 1)

Γ(
∑r
j=1

∑S
s=1 n

(1)
sj + r)Γ(

∑c
k=1

∑S
s=1 n

(2)
sk + c)

.

Under complete-pooling, we obtain the Bayes factor of the general model versus the inde-
pendence model for all areas,

BF 2 =
(rc− 1)!

∏S
s=1

∏I
i=1 Γ(nsi + 1)Γ(

∑r
j=1

∑S
s=1 n

(1)
sj + r)Γ(

∑c
k=1

∑S
s=1 n

(2)
sk + c)

(r −1)!(c−1)!Γ(
∑S
s=1

∑I
i=1 nsi +I)

∏r
j=1 Γ(

∑S
s=1 n

(1)
sj +1)

∏c
k=1 Γ(

∑S
s=1 n

(2)
sk +1)

,

where n
(1)
sj =

∑c
k=1 nsjk, n

(2)
sk =

∑r
j=1 nsjk. This Bayes factor is the same for all areas. It

means that the all areas are regarded as strata with same characteristics in one grand area.
Under two pooling strategies, the Bayes factors are too much influenced by observed sample

data because the priors are noninformative. To complement this concern, we consider the
hierarchical Bayesian model under adaptive-pooling. In specific, adaptive pooling for the
independence model is given by
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ps
iid∼ Dirichlet(µ1, τ1);

qs
iid∼ Dirichlet(µ2, τ2);

π(µ1, τ1) =
(r − 1)!

(τ1 + 1)2
, π(µ2, τ2) =

(c− 1)!

(τ2 + 1)2
,

where µ1 = (µ11, · · · , µ1r),
∑r
j=1 µ1j = 1, 0 < µ1j < 1, j = 1, · · · , r, µ2 = (µ21, · · · , µ2c),∑c

k=1 µ2k = 1, 0 < µ2k < 1, k = 1, · · · , c, τ1 > 0, and τ2 > 0. Under adaptive pooling, the
joint density function for the sth area is

π(ns,ps, qs,µ1,µ2, τ1, τ2) =
ns!∏r

j=1

∏c
k=1 nsjk!

r∏
j=1

c∏
k=1

(psjqsk)nsjk
1

D(µ1τ1)

r∏
j=1

p
µ1jτ1−1
sj

× 1

D(µ2τ2)

c∏
k=1

qµ2kτ2−1
sk

(r − 1)!

(1 + τ1)2
(c− 1)!

(1 + τ2)2
.

In the joint density function, f(ns | ps, qs) is also rewritten as

f(ns|psqs) =

∏r
j=1 n

(1)
sj

∏c
k=1 n

(2)
sk

ns!
∏r
j=1

∏c
k=1 nsjk!

f(n(1)
s |ps)f(n(2)

s |q2)

where f(n
(1)
s |ps) = ns!∏r

j=1 n
(1)
sj

∏r
j=1 p

nsjk

sj and f(n
(2)
s |q2) = ns!∏c

k=1 n
(2)
sk

∏c
k=1 q

nsjk

sk for s =

1, · · · , S. Then we can calculate the marginal likelihood under adaptive pooling using the
rewritten expression for f(ns | ps, qs). The marginal likelihood is

f(ns) =
(r − 1)!(c− 1)!ns!∏r

j=1

∏c
k=1 nsjk!

∫ ∫ ∫ ∫
D(µ1τ1 + n

(1)
s )D(µ2τ2 + n

(2)
s )

D(µ1τ1)D(µ2τ2)(1 + τ1)2(1 + τ2)2
dµ1dτ1dµ2dτ2.

Hence the Bayes factor of the general model versus the independence model for the sth
area under adaptive pooling is

BF 3
s =

(rc− 1)!
∫ ∫ D(µτ+ns)

D(µτ+1)2 dµdτ

(r − 1)!(c− 1)!
∫ ∫ ∫ ∫ D(µ1τ1+n

(1)
s )D(µ2τ2+n

(2)
s )

D(µ1τ1)D(µ2τ2)(τ1+1)2(τ2+1)2 dµ1dτ1dµ2dτ2

.

3. Numerical study

Our interest is to investigate the pooling effects by comparing Bayes factors through
the three different types of pooling strategies; no pooling, complete pooling and adaptive
pooling. For the comparative study, we generate the simulated data which construct the
two categorical variables. Specifically, we generated the data such that the one variable is
divided into 3 levels, while the other is composed of 4 categories in 20 areas. So we have 3×4
contingency tables from 20 areas. Here the response probabilities are taken from uniform
Dirichlet distribution.
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Table 3.1 Contingency tables from the simulated data

Areas n
Two categorical variables

1 2 3 4
1 2 3 1 2 3 1 2 3 1 2 3

1 156 11 2 2 40 4 3 11 8 16 29 0 30
2 100 5 0 2 4 21 28 2 18 14 2 4 0
3 167 23 10 18 65 7 17 4 6 0 9 8 0
4 103 14 9 0 7 3 8 1 7 6 1 15 32
5 141 3 0 23 45 5 4 4 11 4 7 15 20
6 193 4 66 13 16 19 3 3 25 17 4 9 14
7 146 7 58 1 1 11 14 7 3 20 11 0 13
8 141 8 2 2 0 40 26 10 6 1 3 30 13
9 182 6 53 8 27 5 33 5 23 2 8 4 8
10 190 18 4 1 33 11 11 44 7 0 20 12 29
11 103 3 6 7 11 10 11 8 18 2 10 2 15
12 168 10 5 8 39 42 28 0 5 6 12 6 7
13 147 9 3 15 4 2 17 1 66 3 16 11 0
14 157 25 8 24 7 9 19 10 1 17 11 5 21
15 109 11 4 3 48 2 1 12 10 0 8 9 1
16 164 25 1 15 5 10 11 5 15 7 56 2 12
17 174 33 11 2 17 12 22 3 4 21 13 18 18
18 162 0 65 7 10 12 4 4 2 11 2 33 12
19 176 28 8 14 11 1 34 32 2 8 14 11 13
20 109 28 5 1 25 17 6 6 1 1 1 12 6

We consider three Bayes tests of independence as well as classical χ2 test. The χ2 test is
done for the single table in each area and so it does not allow for any pooling of data from
different areas. Bayes test under no pooling is a direct Bayes test which uses only data from
each area. However, Bayes test under complete pooling regards all areas as one grand area.
Moreover, Bayes test under adaptive pooling is a indirect Bayes test which uses the data in
all areas indirectly pooled by hyperparameters. Table 3.1 shows that the simulated counts
in each area (a row of the table) are formed into a 3× 4 contingency table.

Strictly speaking while the p-value can be used to provide evidence for the alternative, the
Bayes factor can be used to provide evidence of either the null hypothesis or the alternative
hypothesis over the other. If the log(BF ) is in (0, 1) or the p-value is in (.05, .10) we get
borderline evidence against the null hypothesis. If the log(BF ) is in (1, 3) or the p-value
is in (.025, .05), we get positive evidence against the null hypothesis. If the log(BF ) is in
(3, 5) or the p-value is in (.01, .025), we get strong evidence against the null hypothesis. If
the log(BF ) is greater than 5 or the p-value is in (.000, .010), we get very strong evidence
against the null hypothesis; see Kass and Raftery (1995).

In Table 3.2, we compare the log(BF ) values of three Bayes tests with the p-values of the
classical χ2 test. The classical χ2 test is comparable to both Bayes test under no pooling
and Bayes test under adaptive pooling. But Bayes test under complete pooling provides
very strong evidence against the null hypothesis in all areas which might lead misleading
in inference. There are some areas in which the χ2 test and Bayes test under no pooling
provide same inferences, but Bayes test under no pooling and Bayes test under adaptive
pooling lead to different inference.
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Table 3.2 Comparisons of the χ2 test and three Bayes tests

Areas χ2test log(BF 1) log(BF 2) log(BF 3)

1 0.0000 16.8213 37.4837 17.1179
2 0.0000 5.2395 37.4837 9.5066
3 0.0000 9.5482 37.4837 14.0984
4 0.0000 20.7604 37.4837 23.8498
5 0.0000 40.4786 37.4837 39.4519
6 0.0000 17.0117 37.4837 19.5477
7 0.0000 48.9853 37.4837 49.6256
8 0.0000 21.3097 37.4837 21.6755
9 0.0000 40.3248 37.4837 43.1446
10 0.0000 19.1170 37.4837 21.1589
11 0.0005 8.5958 37.4837 9.967
12 0.0827 -0.9977 37.4837 3.877
13 0.0000 57.6440 37.4837 59.1607
14 0.0915 -0.8139 37.4837 0.0185
15 0.0000 8.5715 37.4837 9.277
16 0.0000 27.4994 37.4837 28.0636
17 0.0000 20.3411 37.4837 21.729
18 0.0000 23.4972 37.4837 25.3115
19 0.0000 16.4594 37.4837 16.1591
20 0.0000 10.7442 37.4837 14.2011

We have monitored the convergence of Gibbs sampler using Geweke’s test and trace plots.
It turns out that our Gibbs sampler is enough to have convergence to get random samples
based on some diagnostic measures.

Table 3.3 Geweke’s statistic for convergence diagnostic in Gibbs sampler

General model
µ1 µ2 µ3 µ4 µ5 µ6

Statistics -0.5503 0.4695 1.9387 -0.0118 0.4447 -1.4995
p-value 0.5821 0.6387 0.0525 0.9906 0.6565 0.1337

µ7 µ8 µ9 µ10 µ11 µ12
Statistics -0.6491 0.5523 2.1683 -0.2583 -1.8313 0.103
p-value 0.5163 0.5807 0.0301 0.7962 0.0671 0.9179

Independence model
µ11 µ12 µ13

Statistics -0.6962 -0.1775 1.3423
p-value 0.4863 0.8591 0.1795

µ21 µ22 µ23 µ24
Statistics 2.2492 -0.6979 -0.9235 -1.1826
p-value 0.0245 0.4853 0.3557 0.2370

Figure 3.1 Trace plots of µ1 in Gibbs sampler
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4. Concluding remarks

This article has presented Bayes factors for the test of independence for contingency tables
from small areas. To obtain the test statistics, we have constructed the hierarchical Bayesian
model with Dirichlet priors. In both no pooling and complete pooling, the data are directly
pooled by probability parameters of Multinomial distribution. On the contrary to this, the
adaptive pooling is assumed that the data are pooled indirectly by hyper-parameters in
Dirichlet prior. Then we compare the Bayes factors with the χ2 test. We generate the
data from uniform Dirichlet distribution and analyze the simulated data. As a result, the
adaptive pooling seems to provide the better inference among three pooling strategies. By
using indirect pooling method, we can calculate better test statistic which allows borrowing
information from similar areas like in small area estimation.

References

Agresti, A. and Hitchcock, D. B. (2005). Bayesian inference for categorical data analysis. Statistical Methods
and Applications, 14, 297-330.

Evans, R. and Sedransk, J. (1999). Methodoloty for pooling subpopulation regressions when sample sizes
are small and there is uncertainty about which subpopulations are similar. Statistica Sinica, 9, 345-359.

Evans, R. and Sedransk, J. (2003). Bayesian methodology for combining the results from different ex-
periments when the specifications for pooling are uncertain: II. Journal of Statiatical Planning and
Inference, 111, 95-100.

Kass, R. E. and Raftery, A. E. (1995). Bayes factor. Journal of the American Statistical Association, 90,
773-795.

Leonard, T. (1977). Bayes simultaneous estimation for several multinomial distributions. Communications
in Statistics: Theory and Methods, 6, 619-630.

Malec, D. and Sedransk, J. (1992). Bayesian methodology for combining the results from different experi-
ments when the specifications for pooling are uncertain. Biometrika, 79, 593-601.

Nandram, B. (1998). A Bayesian analysis of the three-stage hierarchical multinomial model. Journal of
Statistical Computation and Simulation, 61, 97-112.

Nandram, B. and Kim, H. (2002). Marginal likelihood for a class of Bayesian generalized linear models.
Journal of Statistical Computation and Simulation, 72, 319-340.

Woo, N. and Kim, D. H. (2015). A Bayesian uncertainty analysis for nonignorable nonresponse in two-way
contingency table. Journal of the Korean Data & Information Science Society, 26, 1547-1555.

Woo, N. and Kim, D. H. (2016). A Bayesian model for two-way contingency tables with nonignorable
nonresponse from small areas. Journal of the Korean Data & Information Science Society, 27, 245-
254.


