DOI QR코드

DOI QR Code

Effect of Additive Size on the Densification and Thermal Conductivity of AlN Ceramics with MgO-CaO-Al2O3-SiO2 Additives

  • Lee, Hwa-Jun (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo-Seok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyeong Jun (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2016.08.31
  • 심사 : 2016.11.08
  • 발행 : 2017.01.31

초록

In this study, we investigate the effect of additive size on the densification and thermal conductivity of AlN ceramics with $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) additives. Micro-sized MCAS powder prepared via melting and nano-sized MCAS powder synthesized via the polymeric complex method are used as sintering additives. We analyze the densification behavior of AlN added with 5 wt.% of MCAS by dilatometry as well as by isothermal sintering in the temperature range of $1300{\sim}1700^{\circ}C$. AlN exhibits higher sinterability with nano-MCAS than with micro-MCAS, and both specimens approach their maximum densities when sintered at $1600^{\circ}C$ for 4 h. The thermal conductivities of AlN with 5 wt% of nano- and micro-MCAS additives sintered at $1600^{\circ}C$ are 82.6 and 32.0 W/mK, respectively. We find that nano-MCAS is more effective in sintering of AlN ceramics at lower temperatures, and thus for enhancing their thermal conductivities.

키워드

참고문헌

  1. Y. Baik and R. A. L. Drew, "Aluminum Nitride: Processing and Applications," Key Eng. Mater., 122-124 553 (1996). https://doi.org/10.4028/www.scientific.net/KEM.122-124.553
  2. R. E. Simons, "Thermal Management of Electronic Packages," Solid State Technol., 26 [10] 131-37 (1983). https://doi.org/10.1016/0038-1101(83)90114-4
  3. C. Zweben, "Adv. Comp. Mater. for Thermal Management in Electronic Packaging," JOM, 50 [6] 47-51 (1998). https://doi.org/10.1007/s11837-998-0128-6
  4. Y. Kurokawa, Z. Utsumi, H. Takamizawa, T. Kamata, and S. Noguchi, "AlN Substrates with High Thermal Conductivity," IEEE Trans. Comp., Hybrids, Manuf. Technol., 8 [2] 247-52 (1985). https://doi.org/10.1109/TCHMT.1985.1136500
  5. T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie, and R. A. Cutler, "High-Thermal-Conductivity Aluminum Nitride Ceramics: the Effect of Thermodynamic, Kinetic, and Microstructural Factors," J. Am. Ceram. Soc., 80 [6] 1421-35 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03000.x
  6. A. V. Virkar, T. B. Jackson, and R. A. Cutler, "Thermodynamic and Kinetic Effect of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride," J. Am. Ceram. Soc., 72 [11] 2031-42 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  7. G. A. Slack, "Nonmetallic Crystals with High Thermal Conductivity," J. Phys. Chem. Solids, 34 [2] 321-35 (1973). https://doi.org/10.1016/0022-3697(73)90092-9
  8. L. M. Sheppard, "Aluminum Nitride: A Versatile but Challenging Material," Am. Ceram. Soc. Bull., 69 [11] 1801-3 (1990).
  9. K. Komeya, H. Inoue, and A. Tsuge, "Role of $Y_2O_3$ and $SiO_2$ Additions in Sintering of AlN," J. Am. Ceram. Soc., 57 [9] 411 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11428.x
  10. K. Komeya, A. Tsuge, H. Inoue, and H. Ohta, "Effect of $CaCO_3$ Addition on the Sintering of AlN," J. Mater. Sci. Lett., 1 [8] 325-26 (1982). https://doi.org/10.1007/BF00726476
  11. N. Kuramoto, H. Taniguchi, and I. Aso, "Development of Translucent Aluminum Nitride Ceramics," Am. Ceram. Soc. Bull., 68 [4] 883-87 (1989).
  12. A. L. Molisani, H. N. Yoshimura, H. Goldenstein, and K. Watari, "Effects of $CaCO_3$ Content on the Densification of Aluminum Nitride," J. Eur. Ceram. Soc., 26 [15] 3431-40 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.08.010
  13. T. B. Troczynski and P. S. Nicholson, "Effect of Additives on the Pressureless Sintering of Aluminum Nitride between $1500^{\circ}C$ and $1800^{\circ}C$," J. Am. Ceram. Soc., 72 [8] 1488-91 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07684.x
  14. E. Treicher, T. Chartier, P. Bosch, M. F. Denanot, and J. Rabier, "Densification and Thermal Conductivity of Low- Sintering-Temperature AlN Materials," J. Eur. Ceram. Soc., 6 [1] 23-9 (1990). https://doi.org/10.1016/0955-2219(90)90031-A
  15. J. Jarrige, K. Bouzouita, C. Doradoux, and M. Billy, "A New Method for Fabrication of Dense Aluminium Nitride Bodies at a Temperature as Low as $1600^{\circ}C$," J. Eur. Ceram. Soc., 12 [4] 279-85 (1993). https://doi.org/10.1016/0955-2219(93)90103-X
  16. K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, "Effective Sintering Aids for Low-Temperature Sintering of AlN Ceramics," J. Mater. Res.,14 [4] 1409-17 (1999). https://doi.org/10.1557/JMR.1999.0191
  17. Y. Liu, H. Zhou, L. Qiao, and Y. Wu, "Low-Temperature Sintering of Aluminum Nitride with $YF_3-CaF_2$ Binary additive," J. Mater. Sci. Lett., 18 [9] 703-4 (1999). https://doi.org/10.1023/A:1006692111736
  18. L. Qiao, H. Zhou, H. Xue, and S. Wang, "Effect of $Y_2O_3$ on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics," J. Eur. Ceram. Soc., 23 [1] 61-7 (2003). https://doi.org/10.1016/S0955-2219(02)00079-1
  19. C. M. Cheng, C. F. Yang, S. H. Lo, and T. S. Tseng, "Sintering $BaTi_4O_9/Ba_2Ti_9O_{20}$-Based Ceramics by Glass Addition," J. Eur. Ceram. Soc., 20 [8] 1061-67 (2000). https://doi.org/10.1016/S0955-2219(99)00247-2
  20. Q. Zhang, G. Jiang, H. Zhuang, W. Li, X. Fu, and D. Yan, "Effects of Gravity on the Microstructure of AlN/Glass Composites," Mater. Sci. Eng. A, 352 [1] 217-20 (2003). https://doi.org/10.1016/S0921-5093(02)00904-8
  21. C. F. Yang, C. M. Cheng, H. H. Chung, and C. C. Chan, "Sintering AlN Ceramics Below $1500^{\circ}C$ with MgO-CaO $Al_2O_3-SiO_2$ Glass Addition," Key Eng. Mater., 336-338 1868- 71 (2007). https://doi.org/10.4028/www.scientific.net/KEM.336-338.1868
  22. H. J. Lee, S. W. Kim, and S. S. Ryu, "Sintering Behavior of Aluminum Nitride Ceramics with $MgO-CaO-Al_2O_3-SiO_2$ Glass Additive," Int. J. Refract. Met. Hard Mater., 53 46-50 (2015). https://doi.org/10.1016/j.ijrmhm.2015.04.013
  23. H. M. Lee, K. Bharathi, and D. K. Kim, "Processing and Characterization of Aluminum Nitride Ceramics for High Thermal Conductivity," Adv. Funct. Mater., 16 [6] 655-69 (2014).
  24. J. Y. Qiu, Y. Hotta, and K. Watari, "Enhancement of Densification and Thermal Conductivity in AlN Ceramics by Addition of Nano-Sized Particles," J. Am. Ceram. Soc., 89 [1] 377-80 (2006). https://doi.org/10.1111/j.1551-2916.2005.00692.x
  25. H. J. Lee, W. S. Cho, H. J. Kim, W. Pan, M. Shahid, and S. S. Ryu, "Synthesis of $MgO-CaO-Al_2O_3-SiO_2$ Nano Powder by Polymeric Complex Method as a Novel Sintering Additive of AlN Ceramics," Electron. Mater. Lett., 12 [6] 732-37 (2016). https://doi.org/10.1007/s13391-016-6087-0
  26. A. L. Molisani, H. N. Yoshimura, and H. Goldenstein, "Sintering Mechanisms in Aluminum Nitride with Y or Ca- Containing Additive," J. Mater. Sci.: Mater. Electron., 20 [1] 1-8 (2009).
  27. A. V. Virkar, T. B. Jackson, and R. A. Cutler, "Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride," J. Am. Ceram. Soc., 72 [11] 2031-42 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  28. Y. Kurokawa, K. Utsumi, and H. Takamizawa, "Development and Microstructural Characterization of High-Thermal Conductivity Aluminum Nitride Ceramics," J. Am. Ceram. Soc., 71 [7] 588-94 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05924.x
  29. P. S. De Baranda, A. K. Knudsen, and E. Ruh, "Effect of $SiO_2$ on the Thermal Conductivity of Aluminum Nitride," J. Am. Ceram. Soc., 76 [7] 1761-71 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb06645.x
  30. T. Yagi, K. Shinozaki, N. Ishizawa, N. Mizutani, and M. Kato, "Effect of Silicon Dioxide on the Thermal Diffusivity of Aluminum Nitride," J. Am. Ceram. Soc., 71 [7] C334-38 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05050.x

피인용 문헌

  1. AlN with high strength and high thermal conductivity based on an MCAS-Y2O3-YSZ multi-additive system vol.42, pp.3, 2017, https://doi.org/10.1016/j.jeurceramsoc.2021.11.012