Abstract
The aim of the paper is to present an object recognition method toward augmented reality system that utilizes existing education instruments that was designed without any consideration on image processing and recognition. The light reflection, sizes, shapes, and color range of the existing target education instruments are major hurdles to our object recognition. In addition, the real-time performance requirements on embedded devices and user experience constraints for children users are quite challenging issues to be solved for our image processing and object recognition approach. In order to meet these requirements we employed a method cascading light-weight weak classification methods that are complimentary each other to make a resultant complicated and highly accurate object classifier toward practically reasonable precision ratio. We implemented the proposed method and tested the performance by video with more than 11,700 frames of actual playing scenario. The experimental result showed 0.54% miss ratio and 1.35% false hit ratio.