References
- "Apache Spark," http://spark.apache.org/.
- "Apache Ignite," http://ignite.apache.org/.
- "Apache Hadoop," http://hadoop.apache.org/.
- http://go.databricks.com/hubfs/notebooks/SPARK-10000.html
- Page, Lawrence, et al. The PageRank citation ranking: Bringing order to the web. Stanford infoLab, 1999.
- A. K. Paul, W. Zhuang, L. Xu, M. Li, M. M. Rafique, and A. R. Butt, "CHOPPER: Optimizing Data Partitioning for In-memory Data Analytics Frameworks," in 2016 IEEE International Conference on Cluster Computing (CLUSTER), Sep 2016, pp. 110-119.
- K. Kc and V. W. Freeh, "Dynamically Controlling Node-level Parallelism in Hadoop," in Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, ser. CLOUD '15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 309-316.
- Z. Jia, C. Xue, G. Chen, J. Zhan, L. Zhang, Y. Lin, and P. Hofstee, "Auto-tuning Spark Big Data Workloads on POWER8: Prediction-based Dynamic SMT Threading," in Proceedings of the 2016 International Conference on Parallel Architectures and Compilation, (PACT), New York, NY, USA: ACM, 2016, pp. 387-400.
- A. Gounaris, G. Kougka, R. Tous, C. Tripiana, and J. Torres, "Dynamic Configuration of Partitioning in Spark Applications," IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 7,2017, pp.1891-1904. https://doi.org/10.1109/TPDS.2017.2647939
- http://spark.apache.org/docs/latest/tuning.html
- http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-1
- http://spark.apache.org/docs/latest/configuration.html
- Xu, Luna, et al. "MEMTUNE: Dynamic Memory Management for In-memory Data Analytic Platforms." Parallel and Distributed Processing Symposium, 2016 IEEE International. IEEE, 2016.
- Xu, Erci, Mohit Saxena, and Lawrence Chiu. "Neutrino: revisiting memory caching for iterative data analytics." 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 16). USENIX Association, 2016.
- Yu, Ze, et al. "Taming Non-local Stragglers Using Efficient Prefetching in MapReduce." Cluster Computing (CLUSTER), 2015 IEEE International Conference on. IEEE, 2015.
- Intel. 3D XPoint Technology. URL: http://newsroom.intel.com, 2015.
- Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee. A fully associative, tagless DRAM cache. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA), 2015, pp. 211-222.
- M. Oskin and G. H. Loh. A Software-managed Approach to Die-stacked DRAM. In the 24th International Conference on Parallel Architectures and Compilation Techniques(PACT), San Francisco, CA, USA, Oct 2015.
- M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh. Heterogeneous Memory Architectures: A HW/SW approach for mixing die-stacked and off-package memories. In Proceedings of the 21 st International Symposium on High Performance Computer Architecture (HPCA), Feb 2015.
- J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim. Transparent Hardware Management of Stacked DRAM as Part of Memory. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2014, pp. 13-24.
- L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. NumaGiC: a garbage collector for big data on big NUMA machines. In the 20th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Istanbul, Turkey, 2015.
- M. Jantz, F. Robinson, P. Kulkarni, and K. Doshi. "Cross-layer memory management for managed language applications." In the 2015 ACM SIGPLAN International Conference on Object -Oriented Programming, Systems, Languages, and Applications (OOPSLA), Pittsburgh, PA, USA, 2015.
- Maas, Martin, et al. "Taurus: A holistic language runtime system for coordinating distributed managed-language applications." ACM SIGOPS Operating Systems Review 50.2 (2016): 457-471. https://doi.org/10.1145/2954680.2872386
- Nguyen, Khanh, et al. "Facade: A compiler and runtime for (almost) object-bounded big data applications." ACM Sigplan Notices. Vol. 50. No.4. ACM, 2015.
- K. Nguyen, L. Fang, G. Xu, B. Demsky, S, Lu, S. Alamian, and O. Mutlu."Yak: A high-performance big-datafriendly garbage collector." In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, USA, 2016.