인-메모리 빅데이터 프로세싱 성능 최적화 연구 동향

  • Published : 2017.10.27

Abstract

Keywords

References

  1. "Apache Spark," http://spark.apache.org/.
  2. "Apache Ignite," http://ignite.apache.org/.
  3. "Apache Hadoop," http://hadoop.apache.org/.
  4. http://go.databricks.com/hubfs/notebooks/SPARK-10000.html
  5. Page, Lawrence, et al. The PageRank citation ranking: Bringing order to the web. Stanford infoLab, 1999.
  6. A. K. Paul, W. Zhuang, L. Xu, M. Li, M. M. Rafique, and A. R. Butt, "CHOPPER: Optimizing Data Partitioning for In-memory Data Analytics Frameworks," in 2016 IEEE International Conference on Cluster Computing (CLUSTER), Sep 2016, pp. 110-119.
  7. K. Kc and V. W. Freeh, "Dynamically Controlling Node-level Parallelism in Hadoop," in Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, ser. CLOUD '15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 309-316.
  8. Z. Jia, C. Xue, G. Chen, J. Zhan, L. Zhang, Y. Lin, and P. Hofstee, "Auto-tuning Spark Big Data Workloads on POWER8: Prediction-based Dynamic SMT Threading," in Proceedings of the 2016 International Conference on Parallel Architectures and Compilation, (PACT), New York, NY, USA: ACM, 2016, pp. 387-400.
  9. A. Gounaris, G. Kougka, R. Tous, C. Tripiana, and J. Torres, "Dynamic Configuration of Partitioning in Spark Applications," IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 7,2017, pp.1891-1904. https://doi.org/10.1109/TPDS.2017.2647939
  10. http://spark.apache.org/docs/latest/tuning.html
  11. http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-1
  12. http://spark.apache.org/docs/latest/configuration.html
  13. Xu, Luna, et al. "MEMTUNE: Dynamic Memory Management for In-memory Data Analytic Platforms." Parallel and Distributed Processing Symposium, 2016 IEEE International. IEEE, 2016.
  14. Xu, Erci, Mohit Saxena, and Lawrence Chiu. "Neutrino: revisiting memory caching for iterative data analytics." 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 16). USENIX Association, 2016.
  15. Yu, Ze, et al. "Taming Non-local Stragglers Using Efficient Prefetching in MapReduce." Cluster Computing (CLUSTER), 2015 IEEE International Conference on. IEEE, 2015.
  16. Intel. 3D XPoint Technology. URL: http://newsroom.intel.com, 2015.
  17. Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee. A fully associative, tagless DRAM cache. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA), 2015, pp. 211-222.
  18. M. Oskin and G. H. Loh. A Software-managed Approach to Die-stacked DRAM. In the 24th International Conference on Parallel Architectures and Compilation Techniques(PACT), San Francisco, CA, USA, Oct 2015.
  19. M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh. Heterogeneous Memory Architectures: A HW/SW approach for mixing die-stacked and off-package memories. In Proceedings of the 21 st International Symposium on High Performance Computer Architecture (HPCA), Feb 2015.
  20. J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim. Transparent Hardware Management of Stacked DRAM as Part of Memory. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2014, pp. 13-24.
  21. L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. NumaGiC: a garbage collector for big data on big NUMA machines. In the 20th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Istanbul, Turkey, 2015.
  22. M. Jantz, F. Robinson, P. Kulkarni, and K. Doshi. "Cross-layer memory management for managed language applications." In the 2015 ACM SIGPLAN International Conference on Object -Oriented Programming, Systems, Languages, and Applications (OOPSLA), Pittsburgh, PA, USA, 2015.
  23. Maas, Martin, et al. "Taurus: A holistic language runtime system for coordinating distributed managed-language applications." ACM SIGOPS Operating Systems Review 50.2 (2016): 457-471. https://doi.org/10.1145/2954680.2872386
  24. Nguyen, Khanh, et al. "Facade: A compiler and runtime for (almost) object-bounded big data applications." ACM Sigplan Notices. Vol. 50. No.4. ACM, 2015.
  25. K. Nguyen, L. Fang, G. Xu, B. Demsky, S, Lu, S. Alamian, and O. Mutlu."Yak: A high-performance big-datafriendly garbage collector." In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, USA, 2016.