DOI QR코드

DOI QR Code

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N. (Department of Mathematics, Capital University of Science and Technology) ;
  • Haq, Rizwan Ul (Department of Electrical Engineering, Bahria University) ;
  • Awais, Muhammad (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Rashid, Irfan (Department of Mathematics, Capital University of Science and Technology)
  • Received : 2017.06.25
  • Accepted : 2017.09.17
  • Published : 2017.12.25

Abstract

In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.

Keywords

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME FED, 1995, pp. 99-105, 231/MD-66.
  2. O.D. Makinde, A. Aziz, Boundary layer flow of nanofluid past a stretching sheet with a convective boundary condition, Int. J. Therm. Sci. 50 (2011) 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019
  3. A. Alsaedi, M. Awais, T. Hayat, Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 4210-4223. https://doi.org/10.1016/j.cnsns.2012.03.008
  4. S. Nadeem, C. Lee, Boundary layer flow of nanofluid over an exponentially stretching surface, Nanoscale Res. Lett. 7 (2012) 94. https://doi.org/10.1186/1556-276X-7-94
  5. M. Turkyilmazoglu, I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, Int. J. Heat Mass Transfer 59 (2013) 167-171. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.009
  6. M. Sheikholeslami, M. GorjiBandpy, R. Ellahi, A. Zeeshan, Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces, J. Magn. Magn. Mater. 369 (2014) 69-80. https://doi.org/10.1016/j.jmmm.2014.06.017
  7. M. Awais, T. Hayat, S. Iram, S. Siddiqa, A. Alsaedi, Thermophoresis and heat generation/absorption in flow of third grade nanofluid, Curr. Nanosci. 11 (2015) 394-401. https://doi.org/10.2174/1573413711666150126231434
  8. M. Awais, T. Hayat, S. Iram, A. Alsaedi, Heat generation/absorption effects in a boundary layer stretched flow of Maxwell nanofluid: analytic and numeric solutions, PLoS One 10 (2015), e0129814. https://doi.org/10.1371/journal.pone.0129814
  9. M. Sheikholeslami, M.M. Rashidi, D.D. Ganji, Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model, J. Mol. Liq. 212 (2015) 117-126. https://doi.org/10.1016/j.molliq.2015.07.077
  10. M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Transfer 89 (2015) 799-808. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.110
  11. S. Das, R.N. Jana, Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate, Alexandria Eng. J. 54 (2015) 55-64. https://doi.org/10.1016/j.aej.2015.01.001
  12. F.M. Abbasi, T. Hayat, B. Ahmad, Peristaltic transport of an aqueous solution of silver nanoparticles with convective heat transfer at the boundaries, Can. J. Phys. 93 (2015) 1190-1198. https://doi.org/10.1139/cjp-2014-0625
  13. T. Hayat, S. Asad, A. Alsaedi, Flow of Casson fluid with nanoparticles, Appl. Math. Mech. Engl. Ed. 37 (2016) 459-470. https://doi.org/10.1007/s10483-016-2047-9
  14. A. Shahzad, R. Ali, Approximate analytic solution for magneto-hydrodynamic flow of a non-Newtonian fluid over a vertical stretching sheet, Can. J. Appl. Sci. 2 (2012) 202-215.
  15. A. Shahzad, R. Ali, MHD flow of a non-Newtonian power law fluid over a vertical stretching sheet with the convective boundary condition, Walailak J. Sci. Technol. 10 (2012) 43-56.
  16. M. Khan, R. Ali, A. Shahzad, MHD Falkner-Skan flow with mixed convection and convective boundary conditions, Walailak J. Sci. Technol. 10 (2013) 517-529.
  17. J. Ahmed, A. Shahzad, M. Khan, R. Ali, A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet, AIP Adv. 5 (2015) 117117. https://doi.org/10.1063/1.4935571
  18. J. Ahmed, A. Begum, A. Shahzad, R. Ali, MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions, Results Phys. 6 (2016) 973-981. https://doi.org/10.1016/j.rinp.2016.11.013
  19. H. Ali, M. Khan, A revised model to analyze the heat and mass transfer mechanisms in the flow of Carreau nanofluids, Int. J. Heat Mass Transfer 103 (2016) 291-297. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.049
  20. H. Ali, M. Khan, Critical values in flow patterns of Magneto-Carreau fluid over a circular cylinder with diffusion species: multiple solutions, J. Taiwan Inst. Chem. Eng. 77 (2017) 282-292. https://doi.org/10.1016/j.jtice.2017.04.047
  21. M. Khan, H. Ali, A. Hafeez, A review on slip-flow and heat transfer performance of nanofluids from a permeable shrinking surface with thermal radiation: dual solutions, Chem. Eng. Sci. 173 (2017) 1-11. https://doi.org/10.1016/j.ces.2017.07.024
  22. H. Ali, M. Khan, A.S. Alshomrani, Numerical simulation for flow and heat transfer to Carreau fluid with magnetic field effect: dual nature study, J. Magn. Magn. Mater. 443 (2017) 13-21. https://doi.org/10.1016/j.jmmm.2017.06.135
  23. H. Ali, M. Khan, A.S. Alshomrani, Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder, Eur. Phys. J. E 40 (2017) 8. https://doi.org/10.1140/epje/i2017-11495-6
  24. A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer 101 (1979) 718-725. https://doi.org/10.1115/1.3451063
  25. M. Pakdemirli, B.S. Yilbas, Entropy generation in a pipe due to non-Newtonian fluid flow: constant viscosity case, Sadhana 31 (2006) 21-29. https://doi.org/10.1007/BF02703797
  26. S. Aiboud, S. Saouli, Entropy analysis for viscoelastic magnetohydrodynamic flow over a stretching surface, Int. J. Non-Linear Mech. 45 (2010) 482-489. https://doi.org/10.1016/j.ijnonlinmec.2010.01.007
  27. M.M. Rashidi, S. Abelman, N.F. Mehr, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transfer 62 (2013) 515-525. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
  28. N. Galanis, M.M. Rashidi, Entropy generation in non-Newtonian fluids due to heat and mass transfer in the entrance region of ducts, Heat Mass Transfer 48 (2012) 1647-1662. https://doi.org/10.1007/s00231-012-1009-7
  29. M.M. Rashidi, A.B. Parsab, O. Anwar Beg, L. Shamekhib, S.M. Sadri, Tasveer A. Beg, Parametric analysis of entropy generation in magneto-hemodynamic flow in a semi-porous channel with OHAM and $DTM^1$, Appl. Bionics Biomech. 11 (2014) 47-60. https://doi.org/10.1155/2014/413213
  30. R. Ellahi, M. Hassan, A. Zeeshan, A.A. Khan, The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection, Appl. Nanosci. 6 (2016) 641-651. https://doi.org/10.1007/s13204-015-0481-z
  31. M.M. Bhatti, T. Abbas, M.M. Rashidi, M.E. Ali, Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet, Entropy 18 (2016) 200. https://doi.org/10.3390/e18060200
  32. M.Y.A. Jamalabadi, P. Hooshmand, A. Hesabi, M.K. Kwak, I. Pirzadeh, A.J. Keikha, M. Negahdari, Numerical investigation of thermal radiation and viscous effects on entropy generation in forced convection blood flow over an axisymmetric stretching sheet, Entropy 18 (2016) 203. https://doi.org/10.3390/e18060203
  33. M.A. Sleigh, The Biology of Cilia and Flagella, MacMillian, New York, 1962.
  34. T.J. Lardner, W.J. Shack, Cilia transport, Bull. Math. Biophys. 34 (1972) 25-35.
  35. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model, J. Nanopart. Res. 5 (2003) 167-171. https://doi.org/10.1023/A:1024438603801
  36. N.S. Akbar, M. Raza, R. Ellahi, Influence of heat generation and heat flux on peristaltic flow with interacting nanoparticles, Eur. Phys. J. Plus 129 (2014).

Cited by

  1. Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium vol.26, pp.8, 2017, https://doi.org/10.1007/s11771-019-4158-8
  2. Entropy analysis of Hall current and thermal radiation influenced by cilia with single- and multi-walled carbon nanotubes vol.42, pp.5, 2017, https://doi.org/10.1007/s12034-019-1822-4
  3. Slip and Hall Effects on Peristaltic Rheology of Copper-Water Nanomaterial Through Generalized Complaint Walls With Variable Viscosity vol.7, pp.None, 2017, https://doi.org/10.3389/fphy.2019.00249
  4. MHD Effects on Ciliary-Induced Peristaltic Flow Coatings with Rheological Hybrid Nanofluid vol.10, pp.2, 2020, https://doi.org/10.3390/coatings10020186
  5. Entropy generation during peristaltically flowing nanofluid in an axisymmetric channel with flexible walls vol.95, pp.3, 2017, https://doi.org/10.1088/1402-4896/ab4aab
  6. Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus vol.13, pp.12, 2017, https://doi.org/10.3390/sym13122358