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a b s t r a c t

A loose part monitoring system is used to identify unexpected loose parts in a nuclear reactor vessel or
steam generator. It is still necessary for the mass estimation of loose parts, one function of a loose part
monitoring system, to develop a new method due to the high estimation error of conventional methods
such as Hertz's impact theory and the frequency ratio method. The purpose of this study is to propose a
mass estimation method using a Markov decision process and compare its performance with a method
using an artificial neural network model proposed in a previous study. First, how to extract feature
vectors using discrete cosine transform was explained. Second, Markov chains were designed with
codebooks obtained from the feature vector. A 1/8-scaled mockup of the reactor vessel for OPR1000 was
employed, and all used signals were obtained by impacting its surface with several solid spherical
masses. Next, the performance of mass estimation by the proposed Markov model was compared with
that of the artificial neural network model. Finally, it was investigated that the proposed Markov model
had matching error below 20% in mass estimation. That was a similar performance to the method using
an artificial neural network model and considerably improved in comparison with the conventional
methods.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The purpose of a loose part monitoring system is to monitor
whether there are unexpected objects, called loose parts, in a
reactor vessel and/or steam generator. Usually, bolts, nuts, and
metallic fragments are potential loose parts that can cause interior
structural damage. A loose part monitoring system has two major
functions: indicating the position of a loose part that may exist in a
reactor vessel or steam generator (localization), and estimating its
mass (mass estimation) [1].

Several types of localization techniques [1e3] for loose parts
have been developed, such as the hyperbola, circle, and triangular
intersection methods. In recent years, their performance has
considerably been improved by adding signal-processing methods
that can grasp the propagating characteristics of a dispersive wave
by employing WignereVille distribution [4].

However, mass estimation still needs to be improved in terms of

performance to reduce the error in an estimated mass. There are
two conventional methods for mass estimation. One is an analytic
method based on Hertz's impact theory, which is expressed as
follows [5]:
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where Tcontact is the impact contact time, M is the mass of an
impacting object, V is the velocity of an impacting object, R is the
radius of curvature at the contact point, and kh is a material con-
stant related to Young's modulus ðE1; E2Þ and Poisson ratios ðn1; n2Þ
of the plate and impacting object. The third term of Eq. (1) is ob-
tained from the relationship in which the contact time is inversely
proportional to the dominant frequency ðfpÞ of the Lamb wave.
When this method is utilized to determine the mass of an object,
there is a considerable problem that uncertainty related to three
variables, V, R, and fp, should be solved [6].
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The other is a frequency ratio (FR) method [7] defined as
follows:

FR ¼

Z 6kHz

1kHz
Sðf ÞdfZ 15kHz

10kHz
Sðf Þdf

; (3)

where S(f) is the auto-power spectrum density (APSD) of the
impact signal and f is a frequency. It has been determined that the
power of the low-frequency band, the numerator of Eq. (3), is
subjected to the impact mass and the power of high-frequency
band, the denominator, is rarely changed by external excitation
because the frequency range is strongly affected by the used sen-
sor's feature [7,8]. A previous study [7] stated that the FR method
had an uncertainty or error range for the estimated mass as much
as approximately 0.7 decades.

To overcome these problems in the above two conventional
methods for mass estimation, artificial neural network (ANN) was
employed to estimate the mass of loose parts. ANN has a good
theoretical background and performs feature mapping with
improved accuracy, and so is typically used in deterministic clas-
sification [9]. Figedy and Oksa [10] introduced an ANN model that
used the four mean values of APSD in the defined four frequency
bands as input variables. Shin et al. [11] also proposed an ANN
model that makes use of the coefficients of discrete cosine trans-
form (DCT) on APSD of the impact signal as inputs and showed that
the DCT reflected the features of APSD used for the two conven-
tional mass estimation methods. Although the relative error of the
ANN model for mass estimation was considerably improved
compared with conventional methods, there was a weak point that
the ANN model should be wholly retrained when any new loose
parts having different masses would be considered.

The purpose of this study is to investigate the performance of
the mass estimation method using the Markov decision process
instead of the ANN model. The Markov decision process is a
mathematical framework for modeling decision making as a Mar-
kov model. The Markov model has the advantage that it is easy to
add a model for a new event separately from the models for clas-
sifying existing events. To this end, first, how to extract feature
vectors using DCT was briefly explained. Next, Markov chains were
designed with codebooks obtained from the feature vector, which
are sometimes called input vectors. A 1/8-scaled mockup of the
reactor vessel of OPR1000 was employed as an application
example. The dimensions of the mockup are as follows: height

1,750 mm, outer radius of the lower hemisphere 260 mm, and
thickness of the lower hemisphere 16 mm. All used signals were
obtained by impacting its surface with several solid spherical
masses. Finally, mass estimation performance of the proposed
Markov chain model was compared with those of the ANN model
[11] and two conventional methods by checking the degree of
agreement between the real and estimated masses.

2. Feature extraction of impact signals

As already stated, it is well known that the APSD curve of an
impact signal is mainly changed in the frequency domain according
to the impacting mass. Fig. 1 shows the impact signals according to
mass in the time domain and a comparison of their APSD curves in
the frequency domain. When an impacting mass is heavy, the main
frequency range in which most of the energy exists is narrow and
shifted to the low-frequency side; meanwhile, when the mass is
light, the main frequency range is wide and shifted to the high-
frequency side. In particular, impact strength changes the level of
APSD, but its overall shape in the frequency domain is maintained
[11]. Two conventional methods also made use of these features to
estimate the impacting mass [12].

The basic idea of reflecting the relationship between the APSD of
the impact signal and the impacting mass is to determine the small
number of factors that can reproduce the APSD curve. Thus, the
coefficients of the DCT were introduced as shown in Fig. 2 [11].
After obtaining APSD, a smoothing process was performed to take
into account the overall pattern or shape of the APSD curve. DCT is
applied to the smoothed data, and if a suitable number of co-
efficients are selected, the APSD curve can be copied by the inverse
DCT with the coefficients. The level difference due to the impact
strength is solved by removing the first coefficient of DCT repre-
senting the DC offset in level. As a result, the coefficients of DCT
could be used as feature vectors that are inputs in event
classification.

3. Mass estimation using Markov model

This study employs a Markov model to estimate the impact
mass for a loose part monitoring system. The Markov model is a
statistical algorithm used for pattern classification, speech recog-
nition, fault diagnosis, etc. It has a mathematically systematic
structure, high computational efficiency [13,14], and the distinct
advantage of easy extension to the types of objects to be classified
or the types of recognizable fault. In this chapter, impact signals

Fig. 1. APSD curves of impact signals. (A) Impact signals of three different masses. (B) Comparison of their APSD curves. APSD, auto-power spectrum density.
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were obtained from a 1/8-scaled mockup of a reactor vessel, and a
Markov model for estimating the impact mass was designed using
the coefficients of DCT as input variables.

3.1. Impact signals as test samples

A 1/8-scaled mockup of the OPR1000 reactor vessel was
employed to get the impact signals. Eight accelerometers were
installed in the lower part of the mockup, as shown in Figs. 3A and
3B. Three accelerometers were located at positions that correspond
to the actual ones in the real reactor, and the others were posi-
tioned arbitrarily. Nine solid spheres of different masses (112.0 g,
68.9 g, 45.8 g, 36.9 g, 29.1 g, 24.7 g, 17.7 g, 9.4 g, and 4.6 g) were
collided with the mockup.

To obtain the training data for a model, each sphere was hit at
six different points with five different energies, that is, different
impact velocities at each impacting point. To get test data, the solid
spheres were collided at arbitrary points and with arbitrary en-
ergies. As a result, for each accelerometer, 240 impact signals for
the training and 99 for the test were obtained.

3.2. Design of the Markov model

The most important aspect of recognizing and classifying events
in a problem is finding an optimal input vector that closely repre-
sents the features of events. This study employs the coefficients of
DCT on the APSD of an impact signal as the input vector. As shown
in Fig. 2, it is necessary to determine how many coefficients should
be used when reconstructing the pattern of the APSD curve in the
1/8-scaled mockup. Fig. 4A shows the result of comparison be-
tween the original APSD curve and the reconstructed curve by the
inverse DCT with a finite number of coefficients. As the number of
DCT coefficients that are used increases, the process of how the

reconstructed curve approximates the original curve improves. In
particular, the two curves are nearly identical when using 25 DCT
coefficients for the inverse DCT. To check the agreement between
the original and reconstructed curves, the mean square error be-
tween them was calculated as a function of the number of used
coefficients, as shown in Fig. 4B. The mean square error value is
converged when more than 13 DCT coefficients were used for
approximating the APSD curve. This study used this result to
determine that 14 DCT coefficients were sufficient to represent the
features of the APSD of the impact signal; therefore, the input
vector was composed of 13 DCT coefficients, excluding the first.

A Markov model is a stochastic process used to model randomly
changing systems that have the Markov property, where the future
state is affected only by the current state, and not by states at
previous time periods [15]. Obtaining a Markov model means
getting two probability matrices: a transient probabilitymatrix that
expresses the probability of transitioning from one state to another
according to the changes of the system, and an emission probability
matrix that expresses the probability of an event being generated
from a state. In the case in which the state of a system is fully
observable and the system is controlled, Markov decision process
can be applied, that is, a Markov model in which state transitions
depend on the current state and an external action applied to the
system.

A Markov model for estimating the mass in this study is
designed as shown in Fig. 5. Each state is of the order of the DCT.
The size of the transient probability matrix is T � T, where T is the
number of states. As there are no self-transition and backside
transitions, (t, t þ 1) elements of the transition probability matrix
are 1, where 1 � t � T � 1 and others are 0.

The emission is related to the DCT coefficients. Distributions of
the DCT coefficients at each state differ according to the impact
mass. Fig. 6 compares the distribution of DCT coefficients according

Fig. 2. Procedure for extracting the features of the impact signal by employing discrete cosine transform [11]. APSD, auto-power spectrum density; DCT, discrete cosine transform.
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to the mass. At low orders, the coefficients for which the mass is
heavy are larger than those for which the mass is light. At higher
orders, the investigation showed that the former are more widely
distributed than the latter. This tendency exactly reflects the shapes
of the APSD curves in Fig. 1 according to the impacting mass. In
consideration of these kinds of differences, the codebook related to
emissions is determined according to the impacting mass and
installed accelerometer. At each order (i.e., each state), the
distributed range of DCT coefficients is divided into a finite number
of groups with the same interval, and the groups are allocated
different letters (or colors).

Fig. 7 shows the whole process of making Markov models ac-
cording to their mass and indicating the estimatedmass. First, input

sequences are obtained from the relationship between the code-
book and DCT coefficients of the measured impact signals for a
specific mass. Second, the Markov model is trained with sequences
using the BaumeWelch iteration method [15]. Next, Markov
models that correspond with other masses are obtained in the
same manner; lastly, it indicates which arbitrary impact mass
matches that among the trained impact masses, which was used.
The test sequence related to the DCT coefficient from the impulse
signal due to the arbitrary mass is applied to all Markov models,
and the probabilities obtained from each Markov model are then
compared with one another. Among them, the Markov model that
has themaximumvalue is regarded as being related to the arbitrary
mass.

Fig. 3. Used mockup for obtaining impact signals. (A) 1/8-scaled mockup of a reactor vessel. (B) Positions of the attached accelerometers.

Fig. 4. Original APSD and reconstructed curves. (A) Comparison between the original APSD curve and a reconstructed curve with a finite number of DCT coefficients. (B) Mean
square error between the original and reconstructed curves as a function of the number of DCT coefficients [11]. APSD, auto-power spectrum density; coeffs. ¼ coefficients; DCT,
discrete cosine transform.

Fig. 5. Scheme of the Markov model used in this study.
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This study repeats the above process to get the optimal number
of emissions for each state, and Fig. 8 shows the matching perfor-
mance as a function of the number of emissions. Here, thematching
performance is defined as the ratio of the number of cases that are
identical to the real mass to the total training data. Thus, 20
emissions are chosen for the Markov model. In that case, the
matching performance is above 85% for all masses and measuring
positions, as shown in Fig. 9, and it shows that the Markov models
in this study are well trained.

4. Comparison of mass estimation performance

Ninety-nine test data obtained from nine different masses were
used to compare the mass estimation performance between the

ANN model suggested in a previous study [11] and the Markov
model designed in this study. The ANN model consists of input-
signal hidden-output layers and uses 13 DCT coefficients, which is
equal to the number of inputs used in the Markov model as input
parameters. Fig. 10 shows the mass estimation performance of the
ANN model. In the figure, “relative error” is defined as follows:

Relative errorð%Þ ¼ 1
M

XM
i¼1

jmi �mrealj
mreal

� 100 (4)

where M is the number of test data related to mreal, that is, the real
mass of an impacting sphere, and mi is the estimated mass. The
averaged relative errors for all masses are below 35% except for two,
4.6 g and 9.4 g, relative errors of which are >120%. There are two

Fig. 6. Distributions of the DCT coefficient as a function of order according to mass. (A) 9.4 g. (B) 45.8 g. (C) 112 g. DCT, discrete cosine transform.

S.-H. Shin et al. / Nuclear Engineering and Technology 49 (2017) 1555e1562 1559



reasons for these large relative errors in the lighter masses: lighter
masses could not sufficiently excite the large and heavy structure at
the given velocity, and the resolution of the estimated mass by the
ANN model could be larger than or similar to the light mass.

The same test data were applied to the proposed Markov
models, and its estimation performance is represented in Fig.11 as a
“matching error” corresponding to the discrepancy between the real
and estimated masses. The “matching error” is defined as follows:

Matching errorð%Þ ¼ countðmrealsmiÞ1�i�M

M
� 100; (5)

where the function “count” is the total number of cases that satisfy
the condition within the bracket. The matching errors of all masses
are below 20% except the lightest mass, 4.6 g, which means that no
more than two of the 10 cases are wrong estimation cases.

It is clear that both methods using ANN and Markov chain have
improved the performance in terms of the size of estimation error

compared with the conventional ones [16]. In the case of the ANN
method, the absolute error bound is approximately 8e10 g, which
shows that the estimation performance tends to improve as the
mass increases. However, in the case of the Markov model, there is
no distinct tendency between the mass and estimation perfor-
mance, which shows that the estimation of the Markov model is
dependent on the robustness of the training related to each mass.
Although the Markov model has better performance than the ANN
model for lighter masses, it is not easy to say which is clearly su-
perior, because the errors caused by the two methods cannot be
compared quantitatively.

As state above, the ANN model makes it possible to obtain the
mass of impact object directly and it can then estimate the masses
of arbitrary objects that are not used in its training. The Markov
model judges whether an impact mass is coincident with one of the
masses that were used in its training. Actually, the types of objects
that can become loose parts in a reactor vessel or steam generator
are various, such as strainer pieces and metallic fragments. Among
them, there are limited accessories such as bolts and nuts that are
likely to become loose parts through human error during regular
overhaul. If the impact signals that employ accessories are used as
the training data when making the Markov model, it may approx-
imately identify both the type and the mass of the impact object
simultaneously.

The result permits the conclusion that one can obtain a more
robust estimated mass if the two methods using the ANN and
Markov models are applied complementally. First, an impact mass
is estimated by the ANNmodel. Next, the impact mass is compared
with the mass estimated by the Markov model. If these estimations
are similar, it becomes possible to guess the type of impact object. If
not, the impacting object can be regarded as a new object that was
not used in training either mass estimation model. This overcomes
the drawback that theMarkovmodel may only estimate themasses
of loose parts used in its training. Finally, if one needs to add the
new object into the category of recognizable objects, a Markov
model can easily improve its performance by supplementing the
codebook related to the object.

Fig. 7. Process of training the Markov model according to the mass and indicating estimated masses. EM, expectation-maximization.

Fig. 8. Performance of the Markov model at estimating the mass as a function of the
number of emissions in each state.
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Fig. 9. Performance of the Markov model designed with 20 emissions at each state as a function of the trained masses and measured positions.

Fig. 10. Mass estimation performance by the ANN model as suggested in a previous study [11]. (A) Comparison between the real and estimated masses. (B) Relative error. The error
bar is the standard deviation in each figure. ANN, artificial neural network.

Fig. 11. Mass estimation performance of the designed Markov model.
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5. Conclusion

This study proposed a method that uses a Markov model to
estimate the mass of an impact object, and its estimation perfor-
mance was compared with the results obtained via the ANN model
in a previous study [11]. Bothmethods used the same feature vector
consisting of 13 DCT coefficients related to the APSD of the impact
signal as input variables. The ANN model could directly obtain the
mass of the impact object through nonlinear regression analysis,
and the relative error to the real mass was <30% for masses above
20 g. A Markov model could estimate the mass of an impact object
and give information about its type by comparing it with previously
trained masses. Its matching error representing the disagreement
between the real and estimated masses was <20% except for 4.6 g
objects. Since both errors had different meanings, it was difficult
to say which method was more appropriate for estimating the
impact mass. Nevertheless, investigation revealed that both
methods had improved performance compared with conventional
methods such as Hertz's impact theory and the FR method.

This study was conducted under two limited conditions; one
was that all signals were obtained without internal flow and the
other was that rigid spheres were used as impact objects. The
former was not expected to affect the mass estimation performance
because the frequency components due to internal flow were
distributed within a low-frequency range below 1 kHz. However,
further consideration would be needed in the case of the latter
because the impact signals may vary depending on the shape of the
contact surface during the impact.
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