References
- A. Teller, The EPR Reactor: Evolution to Gen III+ Based on Proven Technology, IAEA INPRO Dialog Forum, Vienna, 2010.
- Korea Hydro & Nuclear Power Co., APR+ Standard Safety Analysis Report, Korea Hydro & Nuclear Power Co., Daejeon, 2014.
- H.Y. Choi, K.W. Lee, J.T. Seo, NSSS Design Features of Advanced Power Reactor Plus (APR+), in: ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, American Society of Mechanical Engineers, 2010. Washington DC, USA.
- S.S. Lee, S.H. Kim, K.Y. Suh, The design features of the advanced power reactor 1400, Nucl. Eng. Technol. 41 (2009) 995-1004. https://doi.org/10.5516/NET.2009.41.8.995
- S.W. Lee, T.H. Hong, M.-R. Seo, Y.-S. Lee, H.-T. Kim, Extended station blackout coping capabilities of APR1400, Sci. Technol. Nucl. Install. 2014 (2014), 980418.
- Terry L. Schulz, Westinghouse AP1000 advanced passive plant, Nucl. Eng. Des. 236 (2006) 1547-1557. https://doi.org/10.1016/j.nucengdes.2006.03.049
- R.C. Challberg, Y.K. Cheung, S.S. Khorana, H.A. Upton, ESBWR evolution of passive features, in: Proc. ICONE-6, 6th International Conference on Nuclear Engineering, San Diego, USA, 1998.
- International Atomic Energy Agency (IAEA), Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants, IAEA-tecdoc-1624, IAEA, Vienna, 2009.
- K.H. Kang, S. Seok, B.U. Bae, Y.J. Cho, Y.S. Park, B.J. Yun, Separate and integral effect tests for validation of cooling and operational performance of the APR+ passive auxiliary feedwater system, Nucl. Eng. Technol. 44 (2012) 597-610. https://doi.org/10.5516/NET.02.2012.710
- International Atomic Energy Agency (IAEA), Status Report 108 - VVER-1200 (V-491), Advanced Reactor Information System, IAEA, Vienna, 2013.
- H. Wang, China's nuclear power development and Hualong One (HPR1000) PWR technology, in: Technical Meeting on Technology Assessment for New Nuclear Power Programs, International Atomic Energy Agency (IAEA), Vienna, 2015.
- Korea Hydro & Nuclear Power Co, Preliminary Study Report on Basic Requirements of IPowerTM, S11NJ17-TC1, Korea Hydro & Nuclear Power Co., Daejeon, 2014.
- Korea Hydro & Nuclear Power Co, Preliminary Application of the Passive System in IPower, S11NJ17-TC2, Korea Hydro & Nuclear Power Co., Daejeon, 2014.
- T.S. Kwon, C.K. Park, Hybrid SIT for passive safety system, in: Trans. of the KNS Spring Meeting, Gwangju, Korea, 2013.
- International Atomic Energy Agency (IAEA), Safety Related Terms for Advanced Nuclear Plants, IAEA-tecdoc-626, IAEA, Vienna, 1991.
- Y.A. Migrov, B.K. Efimov, B.K. Zasuha, A.I. Gorshkov, Experimental investigation of AES-2006 containment processes and passive safety systems in KMS test facility, 6th MNTK (International Scientific and Technical Conferences), Russia, May 26-29, 2009.
- H.G. Kim, J. Cheon, S.H. Kang, The Development of a Passive Auxiliary Feedwater System in APR+, International Congress on Advances in Nuclear Power Plants (ICAPP) 10, June 2010. San Diego, USA.
- B.U. Bae, et al., Design of condensation heat exchanger for the PAFS (passive auxiliary feedwater system) of APR+ (advanced power reactor plus), Ann. Nucl. Energy 46 (2012) 134-143. https://doi.org/10.1016/j.anucene.2012.03.029
- S. Kim, B.J. Yun, S. Kim, K.H. Kang, An experimental study on the validation of cooling capability for the Passive Auxiliary Feedwater System (PAFS) condensation heat exchanger, Nucl. Eng. Des. 260 (2013) 54-63. https://doi.org/10.1016/j.nucengdes.2013.03.016
- H.U. Ha, S. Lee, H. Kim, Optimal design of passive containment cooling system for innovative PWR, J. Nucl. Eng. Technol. 49 (5) (2017) 941-952. https://doi.org/10.1016/j.net.2017.03.005
- Thomas L. Goerge, et al. (QA), NAI 8907-9006, Rev. 19. GOTHIC Thermal Hydraulic Analysis Package Technical Manual, Numerical Applications Inc., Richland, WA, USA, 2012, Version 8.0.
Cited by
- Improvement of Nuclear Science Standards (SNI) to Meet Market Needs and Harmonization vol.1198, pp.2, 2019, https://doi.org/10.1088/1742-6596/1198/2/022010
- 혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구 vol.28, pp.4, 2017, https://doi.org/10.5855/energy.2019.28.4.103
- Development of stability maps for flashing-induced instability in a passive containment cooling system for iPOWER vol.52, pp.1, 2017, https://doi.org/10.1016/j.net.2019.06.026
- Measurement of heat transfer coefficients for steam condensation on a vertical 21.5-mm-O.D. tube in the presence of air vol.57, pp.8, 2017, https://doi.org/10.1080/00223131.2020.1736200
- A review on numerical modelling of flashing flow with application to nuclear safety analysis vol.182, pp.None, 2017, https://doi.org/10.1016/j.applthermaleng.2020.116002
- Parametric analyses for the design of a closed-loop passive containment cooling system vol.53, pp.4, 2017, https://doi.org/10.1016/j.net.2020.09.007
- Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design vol.53, pp.8, 2017, https://doi.org/10.1016/j.net.2021.01.039
- Degradation of condensation heat transfer on a vertical cylinder by a light noncondensable gas mixed with air-steam mixtures vol.130, pp.None, 2017, https://doi.org/10.1016/j.icheatmasstransfer.2021.105779
- Multi-tube effect of external condensation with non-condensable gas in a tube bundle vol.168, pp.None, 2017, https://doi.org/10.1016/j.anucene.2021.108894