DOI QR코드

DOI QR Code

APOLLO3 homogenization techniques for transport core calculations-application to the ASTRID CFV core

  • Received : 2017.05.15
  • Accepted : 2017.08.25
  • Published : 2017.10.25

Abstract

This paper presents a comparison of homogenization techniques implemented in the APOLLO3 platform for transport core calculations: standard scalar flux weighting and new flux-moment homogenization, in different combinations with (or without) leakage models. Besides the historical B1-homogeneous model, a new B-heterogeneous one has indeed been implemented recently in the two/three-dimensional-transport solver using the method of characteristics. First analyses have been performed on a very simple Sodium Fast Reactor core with a regular hexagonal lattice. They show that using the heterogeneous leakage model in association with flux-moment homogenization strongly improves the prediction of $k_{eff}$ and void reactivity effects. These good results are confirmed when the application is done to the fissile assemblies of the more complex CFV (Low Void Effect) core of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project of sodium-cooled fast breeder reactor (Generation IV).

Keywords

References

  1. V.C. Deniz, The Theory of Neutron Leakage in Reactor Lattices, CRC Handbook of Nuclear Reactor Calculations, vol. 2, CRC Press, Boca Raton, FL, 1986, pp. 409-508.
  2. R. Sanchez, Assembly homogenization techniques for core calculations, Prog. Nucl. Energy 51 (2009) 14-31. https://doi.org/10.1016/j.pnucene.2008.01.009
  3. J.-F. Vidal, O. Litaize, D. Bernard, A. Santamarina, C. Vaglio-Gaudard, R. Tran, New modelling of LWR assemblies using the APOLLO2 code package, in: Proceedings of M&C+SNA 2007, American Nuclear Society, Monterey, CA, USA, April 15-19, 2007.
  4. A. Hebert, A reformulation of the transport-transport SPH equivalence technique, in: 7th International Conference on Modelling and Simulation in Nuclear Science and Engineering, Canadian Nuclear Society, Ottawa, Ontario, Canada, October 18-21, 2015.
  5. J.-F. Vidal, P. Archier, A. Calloo, Ph. Jacquet, J. Tommasi, R. Le Tellier, An improved energy-collapsing method for core-reflector modelization in RNR core calculations using the PARIS platform, in: Proceedings of PHYSOR 2012, American Nuclear Society, Knoxville, TN, USA, April 15-20, 2012.
  6. G. Rimpault, J.M. Rieunier, D. Verrier, D. Biron, The ERANOS code and data system for fast reactor neutronic analyses, in: Proceedings of PHYSOR 2002, American Nuclear Society, Seoul, Korea, October 7-10, 2002.
  7. D. Schneider, F. Dolci, F. Gabriel, J.-M. Palau, M. Guillo, B. Pothet, P. Archier, K. Ammar, F. Auffret, R. Baron, A.-M. Baudron, P. Bellier, L. Bourhrara, L. Buiron, M. Coste-Delclaux, C. De Saint Jean, J.-M. Do, B. Espinosa, E. Jamelot, V. Jouault, J.-J. Lautard, R. Lenain, J.-C. Le Pallec, L. Lei Mao, E. Masiello, S. Mengelle, F. Moreau, P. Mosca, M. Muniglia, N. Odry, V. Pascal, S. Pastoris, B. Roque, A. Targa, C. Patricot, S. Santandrea, D. Sciannandrone, A. Tsilanizara, J.-F. Vidal, I. Zmijarevic, $APOLLO3^{(R)}$: CEA/DEN deterministic multi-purpose code for reactor physics analysis, in: Proceedings of PHYSOR 2016, American Nuclear Society, Sun Valley, ID, USA, May 1-5, 2016.
  8. G. Rimpault, J.-F. Vidal, W.F.G. Van Rooijen, Neutron leakage treatment in reactor physics: consequences for predicting core characteristic, in: Proceedings of PHYSOR 2014, American Nuclear Society, Kyoto, Japan, September 28-October 3, 2014.
  9. D. Sciannandrone, S. Santandrea, R. Sanchez, Optimized tracking strategies for step MOC calculations in extruded 3D axial geometries, Ann. Nucl. Energy 87 (2016) 49-60. https://doi.org/10.1016/j.anucene.2015.05.014
  10. G. Chiba, W.F.G. Van Rooijen, Diffusion coefficients for LMFBR cells calculated with MOC and Monte Carlo methods, Ann. Nucl. Energy 38 (2011) 133-144. https://doi.org/10.1016/j.anucene.2010.08.004
  11. F. Varaine, P. Marsault, M.-S. Chenaud, B. Bernardin, A. Conti, P. Sciora, C. Venard, B. Fontaine, L. Martin, G. Mignot, Pre-conceptual design study of ASTRID core, in: Proceedings of ICAPP 2012, Chicago, IL, USA, June 24-28, 2012.
  12. G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold Company, New York, USA, 1970.
  13. J. Tommasi, Heterogeneous BN equations and symmetries, Ann. Nucl. Energy 85 (2015) 145-158. https://doi.org/10.1016/j.anucene.2015.04.039
  14. E. Brun, E. Dumonteil, F.X. Hugot, N. Huot, C. Jouanne, Y.K. Lee, F. Malgavi, A. Mazzolo, O. Petit, J.C. Trama, A. Zoia, Overview of TRIPOLI-4 version 7 continuous energy Monte Carlo transport code, in: Proceedings of ICAPP 2011, Nice, France, May 2-5, 2011.
  15. P. Archier, J.-M. Palau, J.-F. Vidal, V. Pascal, G. Rimpault, B. Roque, S. Santandrea, New reference $APOLLO3^{(R)}$ calculation scheme for sodium fast reactors: from sub-assembly to full core calculations, in: Proceedings of PHYSOR 2016, American Nuclear Society, Sun Valley, ID, USA, May 1-5, 2016.
  16. G. Rimpault, Algorithmic features of the ECCO cell code for treating heterogeneous fast reactor subassemblies, in: International Topical Meeting on Reactor Physics and Computations, Portland, OR, May 1-5, 1995.
  17. J.-Y. Moller, J.-J. Lautard, MINARET, a deterministic neutron transport solver for nuclear core calculations, in: Proceedings of M&C 2011, American Nuclear Society, Rio de Janeiro, Brazil, May 8-12, 2011.

Cited by

  1. A hybrid method to generate few-group cross sections for fast reactor analysis vol.55, pp.8, 2017, https://doi.org/10.1080/00223131.2018.1452650
  2. A 2D/1D Algorithm for Effective Cross-Section Generation in Fast Reactor Neutronic Transport Calculations vol.192, pp.1, 2018, https://doi.org/10.1080/00295639.2018.1480190
  3. SARAX: A new code for fast reactor analysis part I: Methods vol.340, pp.None, 2017, https://doi.org/10.1016/j.nucengdes.2018.10.008
  4. Multiblock Adaptive Mesh Refinement for the SN Transport Equation Based on Lattice Boltzmann Method vol.193, pp.11, 2019, https://doi.org/10.1080/00295639.2019.1620052
  5. NEW REFERENCE APOLLO3® CALCULATION SCHEME FOR LIGHT WATER REACTORS - ANALYSIS OF THE BEAVRS BENCHMARK vol.247, pp.None, 2017, https://doi.org/10.1051/epjconf/202124706031
  6. On the equivalence of reaction rate in energy collapsing of fast reactor code SARAX vol.53, pp.3, 2017, https://doi.org/10.1016/j.net.2020.08.001
  7. Analysis of the TRAPU irradiation in PHENIX with TRIPOLI-4® and DARWIN-3 for the validation of fast reactor fuel depletion calculations vol.157, pp.None, 2017, https://doi.org/10.1016/j.anucene.2021.108167
  8. A Monte Carlo study on burnup treatment in sodium-cooled reactor with Th fuel vol.86, pp.4, 2021, https://doi.org/10.1515/kern-2019-0110
  9. Reduced-order modeling of neutron transport separated in energy by Proper Generalized Decomposition with applications to nuclear reactor physics vol.449, pp.None, 2017, https://doi.org/10.1016/j.jcp.2021.110744