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a b s t r a c t

The extinction probability of a branching process (a neutron chain in a multiplying medium) is calculated
for a system randomly varying in time. The evolution of the first two moments of such a process was
calculated previously by the authors in a system randomly shifting between two states of different
multiplication properties. The same model is used here for the investigation of the extinction probability.
It is seen that the determination of the extinction probability is significantly more complicated than that
of the moments, and it can only be achieved by pure numerical methods. The numerical results indicate
that for systems fluctuating between two subcritical or two supercritical states, the extinction probability
behaves as expected, but for systems fluctuating between a supercritical and a subcritical state, there is a
crucial and unexpected deviation from the predicted behaviour. The results bear some significance not
only for neutron chains in a multiplying medium, but also for the evolution of biological populations in a
time-varying environment.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One interesting characteristics of a branching process is the so-
called extinction probability, i.e. the asymptotic probability that
when time goes to infinity, the number of entities (particles) in the
system is zero.

This paper discusses some aspects of the calculation of the
extinction probability in settings other than the classical case of the
extinction of family trees with constant reproduction probabilities,
or neutron chains in a stationary multiplying medium. The setting
discussed here is the extinction probability in systems randomly
varying in time. Such systems were studied before [1e3], but only
the temporal evolution of the first two moments was investigated.
Aswill be seen here, the calculation of the extinction probability is a
considerably more complicated task, which necessitates the use of
numerical methods.

The dependence of the extinction probability on the multipli-
cation properties of the system in the traditional case, i.e. in a
system with constant parameters (constant multiplication

properties) has long been well known. For subcritical and critical
systems the extinction probability equals unity, whereas for su-
percritical systems it is less then unity. A similar behaviour was
expected also for systems with multiplication properties varying in
time, with the slight difference that the definition of criticality is
different (more involved) for such systems. A system is defined
critical in the mean if the expectation of the neutron number
converges to a constant value as time goes to infinity [1], which
requires that the time-averaged reactivity of the system be negative
[4,3]. Defining the value of this time-averaged subcritical reactivity
as the “critical reactivity”, our expectation was that the extinction
probability in time-varying systems would be unity for negative
average reactivities up to the critical reactivity, and less than unity
for time-averaged reactivities above this value. Much to our sur-
prise, the calculations indicated that the extinction probability re-
mains unity even if the average reactivity is zero, in which case the
system is already supercritical in the mean (the expectation of the
neutron number diverges asymptotically). This is a very unexpected
new result, which constitutes a crucial difference in the properties
of the extinction probability for constant and temporally fluctu-
ating systems, respectively. This result has a significance also for
branching processes other than neutron multiplication, such as the
population dynamics of biological systems in a time-varying
environment.
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2. Theory

Ever since the classic work of Galton and Watson on the
extinction of family trees [5], the extinction probability of a
branching process, started by one entity (individual/particle), has
always been derived from a backward type master equation. One
can write down a backward master equation for the generating
function g(z, t) of the probability distribution p(n, t),

gðz; tÞ ¼
X∞
n¼0

znpðn; tÞ (1)

of having n particles in the system at time t, given that at t¼ 0 there
was one neutron in the system as [3]

vgðz; tÞ
vt

¼ Qfq½gðz; tÞ� � gðz; tÞg (2)

with the initial condition

gðz;0Þ ¼ z: (3)

Here, Q is the intensity of the reaction, and q(z) is the generating
function of the probability distribution f(n) of having n particles
from a reaction, i.e.

qðzÞ ¼
X∞
n¼0

znf ðnÞ (4)

From this, it is immediately possible to obtain an equation for
the probability p(0, t) ≡ p0(t) of extinction until time t, since
p0(t) ¼ g(0, t). The extinction probability

p0 ¼ lim
t/∞

p0ðtÞ

is obtained from (2) by assuming dp0(t)/dt ¼ 0 when t/∞, as the
root of the equation

qðp0Þ ¼ p0 (5)

Actually, the above equation can be derived directly from a
backward-type reasoning, considering the possible fate (¼reaction)
of the first individual (particle). This reasoning was given by the
Dane Agner Krarup Erlang, a member of the famous Krarup family
by his mother, which was about to become extinct. He published
the formulation of the problem in the Danish journal Matematisk
Tidsskrift in 1929 [6]. The reasoning goes as follows. The extinction
probability p0 is equal to the sum of the probabilities of the
mutually exclusive events that the first particle either will not have
any secondaries, with probability f(0), or will have one descendant,
with probability f(1), which will have to die out (with probability
p0), or will have two descendants (probabilityf(2)) which both will
have to die out (probability p20) etc. That is,

p0 ¼ f ð0Þ þ f ð1Þp0 þ f ð2Þp20 þ… ¼ qðp0Þ (6)

More generally, one can also derive a similar backward type
equation for the number distribution of the total number of neu-
trons p(n) generated in the system, due to one starting neutron as

pðnÞ ¼
X∞
k¼0

f ðkÞ
Y

n1þn2þ…nk¼n
pðn1Þpðn2Þ…pðnkÞ (7)

This yields for the generating function the equation

gðzÞ ¼ q½gðzÞ� (8)

from which Eq. (6) is immediately recovered by substituting z ¼ 0.
Although in the above derivation time does not appear explic-

itly, it is clear that the equation is of a backward type. This is
because the construction of the equation is based on the summing
up of the probabilities of the mutually exclusive events that can
happen with the starting particle on its first collision (the multi-
plication of the first entity/individual in the family chain). A for-
ward equation would correspond to the summing up of the
probabilities of the events of the particle(s) on their last collisions
which, given the fact that all particle numbers in the system are
possible, could only be given as an infinite system of coupled
equations.

The above derivation is completely analogous with that of the
first of the so-called B€ohnel equations of nuclear safeguards [7],
which specify the probability distribution of the number of neu-
trons leaving a multiplying sample due to one starting neutron.
These are analogous to the above equations in that they do not
contain time; but also in that it is not possible to derive a forward
equation for any of the number distributions, for the reasons stated
above. As an illustration, we quote the B€ohnel equation for the
probability distribution due to one starting particle, and its gener-
ating function, respectively, as [8].

pðnÞ ¼ ð1� pÞdn;1 þ p
X∞
k¼0

f ðkÞ
Y

n1þn2þ…nk¼n
pðn1Þpðn2Þ…pðnkÞ

(9)

and

hðzÞ ¼ ð1� pÞzþ p q½hðzÞ� (10)

Here, p is the probability that the initial neutronwill have a first
collision before leaving the sample, and h(z) is the generating
function of p(n), where the usual notation was chosen for the
generating function, for easier distinction from the usual extinction
problem.

This latter equation is useful to illustrate the suitability of the
backward equation for the calculation of the whole probability
distribution in a simple recursive manner. First, the “extinction
probability” p(0) of no neutrons leaving the sample is obtained in a
form very similar to the traditional extinction equation as

pð0Þ ¼ p q½pð0Þ� (11)

This is still the same transcendental equation as for the tradi-
tional extinction probability. However, as it was shown in [8], the
higher order probabilities p(n), n�1 can be obtained by solving
linear algebraic equations, in which polynomial combinations of
the (already known) lower order moments appear. Hence, in
principle, the terms of the probability distribution p(n) can be
determined analytically to any arbitrary order of n.

It is thus seen that with the backward formalism, one can derive
an equation directly for the extinction probability (or, for that
matter, for the asymptotic number distribution of the neutrons in
the system or those leaving the system), without the need of first
deriving an equation for g(z,t) and then substitute z ¼ 0 and take
the limit t/∞.

However, for systems varying randomly in time, the backward
equation is not applicable. Themain reason, as discussed in [1e3], is
that the factorisation ansatz of the backward equation cannot be
applied, because the evolution of the chains started by neutrons
born simultaneously will not be independent (will be influenced
simultaneously by the changing properties of the material). Hence
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the only possibility for the calculation of the extinction probability
in a temporally randomly varying medium is to use the forward
equation.

Application of the forward equation for the determination of the
extinction probability is though much more cumbersome than that
of the backward equation, and is not to be found in the literature.
The difficulties will be illustrated with the case of the traditional
branching process in a stationary medium. The forward equation
for this case reads as

vgðz; tÞ
vt

¼ Q ½qðzÞ � z� vgðz; tÞ
vz

: (12)

Substituting z ¼ 0 in Eq. (12) shows that there is a closure
problem; the resulting equation contains both p0(t) and p1(t); dif-
ferentiationwith respect to z and substituting z¼ 0 will lead to and
equation containing p1(t) and p2(t), and so on. Besides, being a
forward equation, operating on the final co-ordinates, one cannot
take the limit t/∞ in the equation itself, only in the solution.

In contrast, no closure problem exists when calculating the
moments of the distribution, as it was seen in [1e3]. This is because,
although the r.h.s. of Eq. (12) contains a first derivative with respect
to z, differentiating both sides of the equation will lead to equal
derivatives on both sides, due to the factor q(z) � z on the right
hand side, which vanishes for z ¼ 1.

It is also obvious that the heuristic reasoning of the type of Eq.
(6) is not applicable here; the asymptotic value of p0 requires the
knowledge of the asymptotic value of p1, which requires the
knowledge of p2 and so on, illustrating again the problem of closure
and the need for the knowledge of the full solution of p(n,t).

The above shows that a suitable starting point is to first
investigate the possibilities of determining the extinction proba-
bility from a forward master equation for the classic case of the
static medium, after which the solution method may be
attempted to be generalised to the case of the randomly varying
system. Two basic possibilities appeared to be worth trying. The
first is to Laplace transform in time the forward equation, and
then seek the asymptotic value of the extinction probability with
the help of the Tauberian theorem. In other words, taking the
Laplace transform

gðz; sÞ ¼
Z∞

0

e�stgðz; tÞdt (13)

will convert Eq. (12) to

s gðz; sÞ � z ¼ Q ½qðzÞ � z� vgðz; sÞ
vz

; (14)

This differential equation may be solved for g(z,s). Since the
extinction probability is defined as

p0 ¼ lim
t/∞

gðz ¼ 0; tÞ; (15)

from the solution for g(z,s), this can be recovered as

p0 ¼ lim
s/0

s gðz ¼ 0; sÞ (16)

If such a solution can be obtained, one might try to generalise it
to the case of a medium randomly varying in time.

If this method should not work, then one can restrict the
branching process to a quadratic one, such that the total number of
new-born particles is either zero, one, or at most two, i.e.

f ðnÞ ¼ f0dn;0 þ f1dn;1 þ f2dn;2 (17)

and hence

qðzÞ ¼ f0 þ f1zþ f2z
2 (18)

It was shown in [3] that in a static system, for such a case a
complete time-dependent solution can be obtained for the full
generating function, and hence for the extinction probability.
Hence this method appeared to have larger potential to be appli-
cable for the randomly varying system.

In the case of a system randomly varying between two states,
such as in those treated in [3], the notations of which will be used
here, one seeks the generating function gj,i(z,t), {i,j ¼ 1,2} of the
probability that at time t there are n particles in the system, and the
system is in state j, on the condition that at time t ¼ 0, the system
was in state i and therewas one particle in themultiplyingmedium.
Since we are only interested in the asymptotic behaviour of the
neutron population irrespective of the state of the system, we seek
the extinction probability

p0;i≡pi ¼ lim
t/∞

h
g1;ið0; tÞ þ g2;ið0; tÞ

i
(19)

It is this quantity whose calculation is attempted in this paper.
As will be seen below, none of the above expectations worked,

and only a pure numerical scheme made it possible to calculate the
extinction probability in systems randomly varying in time.

3. Solutions

3.1. General solution in a static medium

We start with the forward equation

vgðz; tÞ
vt

¼ Q ½qðzÞ � z� vgðz; tÞ
vz

; (20)

which can be re-written by introducing t ¼ Qt as

vgðz; tÞ
vt

¼ ½qðzÞ � z� vgðz; tÞ
vz

(21)

Taking a Laplace transform in time we have

gðz; sÞ ¼
Z∞

0

dte�stgðz; tÞ (22)

from which one can deduce the following condition which may be
of use later, viz:

sgðz; sÞlim s/0 ¼ gðz;∞Þ (23)

Then Eq. (21) becomes

ðqðzÞ � zÞdg
dz

¼ sg � z (24)

Rearranging this we have

dg
dz

� s
qðzÞ � z

g ¼ � z
qðzÞ � z

(25)

Introducing the integrating factor leads to
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d
dz

 
ge

�sz
R

dz0
qðz0Þ�z0

!
¼ � z

qðzÞ � z
e
�sz
R

dz0
qðz0Þ�z0 (26)

Integrating from z to unity, we find

gð1; sÞe
�s1
R

dz0
qðz0Þ�z0 � gðz; sÞe

�sz
R

dz0
qðz0Þ�z0 ¼ �

Z1

z

z0dz0

qðz0Þ � z0
e
�sz0
R

dz
00

qðz000 Þ�z00

(27)

After some re-arrangement this becomes

gðz; sÞ ¼ 1
s
e

�s

Z1

z

dz0

qðz0Þ � z0
þ
Z1

z

z0dz0

qðz0Þ � z0
e

�s

Zz0

z

dz
00

qðz000 Þ � z00

(28)

where we have set gð1; sÞ ¼ 1=s . Again we may write

sgðz; sÞ ¼ e

�s

Z1

z

dz0

qðz0Þ � z0
þ s
Z1

z

z0dz0

qðz0Þ � z0
e

�s

Zz0

z

dz
00

qðz000 Þ � z00

(29)

We may now be tempted to use the relation Eq. (23). However
this leads on first sight to g(z,∞) ¼ 1, for all z, which is not helpful.
The fact that this result occurs means that we have not dealt with
singularities appearing in the integrands of Eq. (9). These occur at
the zeros of

qðzÞ � z ¼ 0 (30)

It would appear that before taking the limit in Eq. (29) we
should use the properties of q(z). Indeed, if one specifies the process
as quadratic, i.e. only absorption, scattering and binary fission can
take place, the problem can be solved, as it was shown in [3]. From
now on we restrict ourselves to such processes, and turn to the
binary random medium.

3.2. Quadratic process in a time-varying medium

We will now employ the quadratic process, characterised with
the number distribution (17) and its quadratic generating function
(18). Note that since

f0 þ f1 þ f2 ¼ 1; (31)

one of the fi can be expressed with the other two, which simplifies
the notations. As is known, in the classical case, the extinction
probability is unity for subcritical and critical systems, i.e. when

Efng ¼
�
dqðzÞ
dz

�
z¼1

¼ q0ð1Þ≡n � 1; (32)

whereas it becomes less than unity for n > 1. From (17) or (18) one
obtains

n ¼ f1 þ 2f2; (33)

hence using (31) leads to the condition of criticality as

f0 ¼ f2: (34)

The distribution can be defined by two parameters, e.g. by f0 and
f2, f0 þ f2 � 1, or by the mean n and either the variance or the second

factorial moment q2 ≡ q00(1) of the number of secondary particles
per reaction.

The temporally randomly varyingmultiplying systemwill be the
same as that used in our previous work [1e3]. It is assumed that the
system has two states, with reaction intensities Qi and the gener-
ating functions of the distribution neutrons per reaction, qi(z),
i ¼ 1,2. The generating functions will be defined in terms of the
parameters ni and q2,i, i ¼ 1,2, which are defined as the first and
second factorial moments of the corresponding number
distributions:

ni ¼ q0ið0Þ (35)

and

q2;i ¼ q
00

i ð0Þ (36)

We will seek the generating functions gj,i(z,t), j,i ¼ 1,2 of the
probability that at time t, the system is in state j and the number of
neutrons in the system equals n, given that at time t ¼ 0 the system
was in state i and there was one neutron in the system. It is also
assumed that the probability that during time Dt the system
changes from state 1 to state 2, or vice versa, is equal to lDtþ o(Dt).

As it is shown e.g. in [3], the generating functions gj,i(z,t) obey
the following coupled differential equation system:

vg1;iðz; tÞ
vt

¼ Q1½q1ðzÞ � z�
vg1;iðz; tÞ

vz
þ l
h
g2;iðz; tÞ � g1;iðz; tÞ

i
;

(37)

and

vg2;iðz; tÞ
vt

¼ Q2½q2ðzÞ � z�
vg2;iðz; tÞ

vz
þ l
h
g1;iðz; tÞ � g2;iðz; tÞ

i
;

(38)

with the initial conditions

gj;iðz;0Þ ¼ z dij; i; j ¼ 1;2:

The expectation is that substituting quadratic forms for the qi(z),
taking temporal Laplace transforms and eliminating, say, g2,i(z,s), a
differential equation in z can be derived for g1,i(z,s). Having solved
this differential equation, one can obtain the corresponding
extinction probability by the Tauberian theorem as

lim
t/∞

g1;ið0; tÞ ¼ lim
s/0

s g1;ið0; sÞ (39)

Unfortunately, this strategy does not work because the arising
differential equation for g1,i(z,s) is not amenable for an analytic
solution. A Laplace transform in time yields

Q1½q1ðzÞ � z�
vg1;iðz; sÞ

vz
þ l g2;iðz; sÞ � ½lþ s�g1;iðz; sÞ ¼ z d1;i

(40)

and

Q2½q2ðzÞ � z�
vg2;iðz; sÞ

vz
þ lg1;iðz; sÞ � ½lþ s�g2;iðz; sÞ ¼ z d2;i

(41)

Substitution of a quadratic form for the qi(z) yields for the factors
multiplying the derivatives in (40) and (41)
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qiðzÞ � z ¼ ð1� zÞ
�
1� ni þ

1
2
q2;ið1� zÞ

�
(42)

Putting these into the equations, differentiating (40) w.r.t. z and
eliminating g2,i(z,s) leads to

d2g1ðz; sÞ
dz2

þ
�

n1 � 1
q1ðzÞ � z

� lþ s
q1ðzÞ � z

� lþ s
q2ðzÞ � z

�
dg1ðz; sÞ

dz

þ sðsþ 2lÞ
ðq1ðzÞ � zÞðq2ðzÞ � zÞg1ðz; sÞ þ

q2ðzÞ � zð2lþ 1þ sÞ
ðq1ðzÞ � zÞðq2ðzÞ � zÞ

¼ 0 (43)

This equation shows the basic difference between the deter-
mination of the moments and that of the extinction probability.
When calculating the moments, the substitution z ¼ 1 can be made
already in the defining equations. Hence after a temporal Laplace
transform, there remain only algebraic equations to be solved with
constant coefficients for the gðnÞj;i ð1; sÞ. These can be readily handled,
evenwith a general (not quadratic) qi(z), since only the moments of
this distribution occur. For the extinction probability, the substi-
tution z ¼ 0 would lead to a closure problem, hence the differential
equations first need to be solved for the gj.i(z,s), and the substitution
z ¼ 0 can only be made afterwards. The differential equation is not
of constant coefficients, rather the coefficients are highly non-
linear functions of z. This shows that the derivation of the extinc-
tion probability in a randomly varying medium is substantially
more complicated than calculating the first two moments of the
neutron distribution.

3.3. Numerical solution

Since there is very little hope that Eq. (42) can be solved
analytically, we chose a numerical solution. Since a numerical so-
lution is not suitable for the application of the Tauberian theorem,
instead of solving the Laplace-transformed equations (40)e(41) or
(43), the original equations (37)e(38) were solved. Two different
solution methods were used: one based on the Chebyshev-Gauss-
Lobatto collocation algorithm, which will be referred to as “the
numerical scheme”, and one based on the numerical partial dif-
ferential equation system solver NDSolve of the symbolic manip-
ulation code Mathematica [9].

Since p0¼1 is always a root of the extinction equation (5), which
is the non-physical root for the case of subcritical systems where
two roots exist in z2½0;1�, the question may arise whether the
numerical schemes yield the physical root. This question was
investigated in Ref. [10], where it was shown that unless starting
with the pathological initial conditions of no particles in the sys-
tem, a numerical solution will find the physical root.

In the numerical scheme, it is convenient to transform the var-
iable z(0,1) to x(�1,1) via the substitution x ¼ 2z�1, so that it con-
forms to the space of the Chebyshev polynomials. Thus, Eqs. (37)
and (38) then become

vg1ðx; tÞ
vt

¼ Q1ð1� xÞ
�
1� n1 þ

1
4
q2;1ð1� xÞ

�
vg1ðx; tÞ

vx

þ l½g2ðx; tÞ � g1ðx; tÞ� (44)

and

vg2ðx; tÞ
vt

¼ Q2ð1� xÞ
�
1� n2 þ

1
4
q2;2ð1� xÞ

�
vg2ðx; tÞ

vx

þ l½g1ðx; tÞ � g2ðx; tÞ� (45)

and the initial conditions become

g1;iðx;0Þ ¼
1
2
ð1þ xÞd1i and g2;iðx;0Þ ¼

1
2
ð1þ xÞd2i: (46)

We solve equations (44) and (45) by replacing the derivative
v=vx by a Chebyshev-Gauss-Lobatto collocation in the form

vyðxÞ
vx

jxkz
XN
j¼0

Dk;jy
�
xj
�

(47)

where xj ¼ cos(pj/N) and the Dk,j are defined in [11] (but see the
original paper by Don and Solomonoff [12] for correct form). Then
one has

dg1k;iðtÞ
dt

¼ Q1ð1� xkÞ
�
1� n1 þ

1
4
q2;1ð1� xkÞ

�

�

2
4XN

j¼1

Dk;jg1;j;iðtÞ þ Dk;0g1;0;iðtÞ

3
5

þ l1

�
g2;k;iðtÞ � g1;k;iðtÞ

	
(48)

and

dg2k;iðtÞ
dt

¼ Q2ð1� xkÞ
�
1� n2 þ

1
4
q2;2ð1� xkÞ

�

�

2
4XN

j¼1

Dk;jg2;j;iðtÞ þ Dk;0g2;0;iðtÞ

3
5

þ l1

�
g1;k;iðtÞ � g2;k;iðtÞ

	
(49)

Eqs (48) and (49), together with the initial and boundary con-
ditions, allow a numerical solution, from which the extinction
probability is extracted at z¼ 0 or x¼�1. Since we are interested in
the extinction probability irrespective of the final system state, we
use Eq. (19). In terms of the collocation points this is expressed as

pi ¼ gið0; tÞ ¼ g1;N;iðtÞ þ g2;N;iðtÞ (50)

This way the whole time dependence of the probability gi(0,t) of
no particles being in the system is recovered, and the extinction
probability is equal to its value for a t for which the asymptotic state
is reached. The same procedure is used when finding the solution
with the application of the Mathematica routine NDSolver, namely
the extinction probability is extracted from the asymptotic value of
the solution for large times at z¼ 0. This is a rather challenging task
for both methods due to the large time scales involved in the
calculations.

4. Quantitative results and discussion

Quantitative results for some characteristic cases will be
shown below. The selection of the cases is based on the knowl-
edge gained through the study of the behaviour of the moments
of the neutron population in systems randomly varying in time
[1e3]. For easy reference, some notations and basic properties of
the time-varying systems will be re-capitulated. First of all, in the
continuation, the reaction intensities will be assumed equal, i.e.
we will assume that Q1 ¼ Q2 ¼ Q, so that some properties of the
systems randomly fluctuating in time, reported in the previous
publications where a similar assumption was used, become
applicable. For the definition of the reactivity, instead of the first
moment quantities ni, it is more convenient to introduce the
parameters

ai ¼ Qiðni � 1Þ; (51)
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In such a simple multiplying system without delayed neutrons,
the parameters ni can be identified with the multiplication factor,
and the parameters ai correspond to the reactivities of the corre-
sponding static systems. In the case of a constant system, a < 0
represents a subcritical and a > 0 a supercritical system.

However, for the case of temporally varying systems, the situ-
ation is somewhat more involved. An illustration of a system
randomly jumping between two states, as described by the pa-
rameters a1 and a2 is shown in Fig.1. In the Figure, a1 > 0 and a2 < 0,
i.e. the system is fluctuating between a supercritical and a
subcritical state. As it was discussed in the above publications, a
system, both of whose states are subcritical or supercritical, are
called strongly subcritical and strongly supercritical, respectively.
Those systems which fluctuate between a subcritical and a super-
critical state fall into three categories. Defining the parameter

lcr ¼
a1a2

a1 þ a2
; (52)

it was found that systems that fulfil the condition

l ¼ lcr (53)

such that a1 a2 < 0, are critical in the mean, in the sense that the
expectation of the population is constant. Systemswhere l < lcr are
supercritical in the mean, that is the expectation of the population
diverges in time, whereas if l > lcr, the system is subcritical in the
mean, that is the expectation dies out asymptotically.

A particular feature, found already in 1971 [4] is that if the
system fluctuates randomly between a supercritical and a subcrit-
ical state such that the average reactivity is zero, i.e.

a1 þ a2 ¼ 0 or
n1 þ n2

2
¼ 1; (54)

such systems are supercritical in the mean (except for the patho-
logical case when l diverges). In order that the system be critical in
the mean, the a1 and a2 values must fulfil (52) and (53), for which
one finds that

a ¼ a1 þ a2
2

¼ acrit <0 (55)

Such a negative acrit is denoted by the broken green line in Fig. 1, i.e.
the figure illustrates the case of a system critical in the mean.

Based on these preliminaries, and on the known dependence of
the traditional extinction probability on the criticality of the

system, one would expect that in a time-varying system, the
extinction probability is unity for a � acrit, whereas it is less than
unity for a>acrit. That is, the point when the extinction probability
starts deviating from unity is when the system becomes super-
critical in the mean. However, the numerical results indicate
otherwise, as will be seen in the quantitative results shown below.

Fig. 2 shows the case of a strongly subcritical system, for which
both a1 and a2 are negative. The upper part of the figure illustrates
the random variation of a. This subfigure is only schematic both
here and in the subsequent figures, i.e. the a values do not corre-
spond quantitatively to those used in the calculations of the
extinction probability in the subfigures below it. The blue line

Fig. 1. Illustration of a multiplying system randomly varying between two states.

Fig. 2. Time dependence of the extinction probability in a strongly subcritical
randomly varying system. Middle subfigure: solution with a numerical scheme;
lowermost subfigure: solution obtained by the NDSolver routine of Mathematica 11.
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represents the mean reactivity a of the system, whereas the broken
line stands for the critical value acrit < 0. The system is critical in the
mean when a ¼ acrit , i.e. when the broken line and the solid blue
line coincide. The middle and the lower subfigures show the
quantities pi ¼ gi(0,t) for i ¼ 1,2 as obtained from the numerical
scheme and from the Mathematica solver, respectively. The
subscript i defines the initial conditions, i.e with which a value the
system started. The two curves in the figures correspond to these
two different initial conditions. It is seen that, as expected, the
extinction probabilities converge to unity for both solution
methods.

As it was noted already in the earlier work concerning the ex-
pectations, the initial conditions have a strong influence on the
system behaviour, which in most cases prevails even in the

asymptotic state. Such a difference is seen here too, but it is
restricted to the speed of attaining the asymptotic values. However,
asymptotically, both extinction probabilities (starting from the
deeper or shallower subcritical state) tend to unity, as expected. It is
seen that g1(0,t), which corresponds to the case when the system
started from the deeper subcritical case, reaches the asymptotic
value faster. This is in accordance with the findings on the expec-
tations in [3], where also a dependence of the asymptotic values on
the initial conditions was found, and which is clear intuitively.

In Fig. 3 the time dependence of the system parameters, as well
as that of the extinction probabilities are shown for the case of two
strongly supercritical systems. The results from both the numerical
scheme and the Mathematica solver are fully consistent with each
other and with the expectations. They both yield extinction prob-
abilities less than unity. Moreover, the differences in the time

Fig. 3. Time dependence of the extinction probability in a strongly supercritical
randomly varying system.

Fig. 4. Time dependence of the extinction probability in a randomly varying system
which is critical in the mean.
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evolution of the extinction probabilities, due to the different initial
conditions, remain non-zero even asymptotically. As expected, the
extinction probability is larger for the cases which started from the
less supercritical state.

The results so far correspond towhat onewould expect from the
similar results for traditional (constant) systems, and from physical
intuition. Since for the constant systems, the extinction probability
is unity even for critical systems, it is natural to expect that this will
also be the case for time-varying systems which are critical in the
mean. For such systems the values a1 and a2 must be chosen such
that a ¼ acrit <0.

Such a case is shown in Fig. 4. The uppermost subfigure illus-
trates that this is the case when a ¼ acrit <0, i.e. when the solid and
the broken lines, representing these two values in the uppermost
subfigure, coincide. With Q1 ¼ Q2 ¼ Q ¼ 104 s�1 and l ¼ 104 s�1, the

values n1 ¼ 1.2 and n2 ¼ 0.75 fulfil (52) and (53). Indeed, as the
Figure shows, and also the numerical values confirm to four sig-
nificant digits, the extinction probabilities tend to unity even in this
case. However, the convergence is much slower than in the strongly
subcritical system.

It is nowalso interesting to investigate the casewhen the system
parameters vary in such a manner that a1 þ a2 ¼ 0, i.e. the time-
averaged reactivity of the system is zero. From earlier works [4,1]
we know that in such systems the expectation of the population
diverges, i.e. the system is supercritical in the mean. One would
therefore expect that the extinction probability is less then unity.

Very surprisingly, the numerical results indicate it otherwise, as
shown in Fig. 5. The figure shows the case when the system is
fluctuating between a subcritical and a supercritical state with
n1 ¼ 0.6 and n2 ¼ 1.4, with the values l ¼ 103s�1 and
Q1¼ Q2¼104s�1. This system fulfils the condition expressed in (54),
i.e. its average criticality is zero in the traditional sense.

It is seen that the extinction probability, as calculated by the two
different methods, converges to unity. However, these calculations
are rather complicated because the numerical schemes become
unstable for long times. As the lowest subfigure shows, the
convergence is only seen for rather long times. It is also seen that
the extinction probability for the case when the system started
from the subcritical state has already converged when the

Fig. 5. Time dependence of the extinction probability in a randomly varying system
with a zero time-averaged reactivity, which is thus supercritical in the mean.

Fig. 6. Time dependence of the extinction probability in a randomly varying system
with a zero time-averaged reactivity, which is supercritical in the mean, for long times.

Fig. 7. Asymptotic time dependence of the extinction probability in a randomly
varying system with a zero time-averaged reactivity, i.e. which is supercritical in the
mean.
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corresponding probability for the case when the process started
from the supercritical state, has still not converged. The proof of the
convergence of this latter requires calculations for very long times.
This is illustrated in Fig. 6. It is seen that for t¼ 18 sec the extinction
probability deviates from unity only in the seventh digit even for
the case when the system started from the strongly supercritical
state. Another case of a system with a ¼ acrit , i.e. which is super-
critical in the mean, but with different values of a1, a2 and acrit is
shown in Fig. 7. In this case the two values of a are much closer to
each other, and the positive a is much smaller than in the previous
case, hence the asymptotic regime is reached much faster (but note
the logarithmic scale on the x-axis).

These results mean that in the domain acrit � a � 0, the
extinction probability is still unity, despite the fact that the
temporally varying system is supercritical in the mean. This is an
unexpected result, revealing interesting new insight into the
physics of branching processes in temporally randomly varying
media. It has though to be noted that this result was obtained by
numerical methods, and has to be substantiated by further nu-
merical and analytical investigations.

5. Conclusions

It was shown that the extinction probability in systems
randomly varying in time can only be calculated with purely nu-
merical methods, even if the generation function of the reproduc-
tion multiplicity is quadratic, i.e. at most two new particles/entities
can be produced per reaction. Twomethodswere used in this paper
to calculate the extinction probability, a scheme based on the
Chebyshev-Gauss-Lobatto collocation algorithm, and one based on
the numerical partial differential equation system solver NDSolve
of the symbolic manipulation code Mathematica [9].

The results show that the properties of the extinction proba-
bility in systems fluctuating in time are in agreement with those of
the lower order moments, but appear to show some novel features
as well. In particular, it was found that for systems with a time-
averaged reactivity equal to zero, the extinction probability is still
equal to unity. Such a result may have some relevance with the

evolution of biological processes, such as the population dynamics
of bacteria colonies.

It has also to be added that the results presented in the paper are
based on numerical calculations, which has to be kept in mind
when interpreting them. Whether the extinction probability is
exactly unity or only extremely close, is not possible to show by
pure numerical methods. However, the observation of the possi-
bility of an extinction probability being unity in supercritical sys-
tems is a rather interesting one, and further workwill be performed
to confirm the present results, as well as to get a deeper insight into
the characteristics of the extinction probability in systems
randomly varying in time.
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