DOI QR코드

DOI QR Code

Clustering and traveling waves in the Monte Carlo criticality simulation of decoupled and confined media

  • Dumonteil, Eric (Institut de Radioprotection et de Surete Nucleaire, IRSN/PSN-EXP/SNC) ;
  • Bruna, Giovanni (Institut de Radioprotection et de Surete Nucleaire, IRSN/PSN-EXP/SNC) ;
  • Malvagi, Fausto (Den-Service D'etudes des Reacteurs et de Mathematiques Appliquees (SERMA), CEA, Universite Paris-Saclay) ;
  • Onillon, Anthony (Institut de Radioprotection et de Surete Nucleaire, IRSN/PSN-EXP/SNC) ;
  • Richet, Yann (Institut de Radioprotection et de Surete Nucleaire, IRSN/PSN-EXP/SNC)
  • Received : 2017.06.03
  • Accepted : 2017.07.26
  • Published : 2017.09.25

Abstract

The Monte Carlo criticality simulation of decoupled systems, as for instance in large reactor cores, has been a challenging issue for a long time. In particular, due to limited computer time resources, the number of neutrons simulated per generation is still many order of magnitudes below realistic statistics, even during the start-up phases of reactors. This limited number of neutrons triggers a strong clustering effect of the neutron population that affects Monte Carlo tallies. Below a certain threshold, not only is the variance affected but also the estimation of the eigenvectors. In this paper we will build a time-dependent diffusion equation that takes into account both spatial correlations and population control (fixed number of neutrons along generations). We will show that its solution obeys a traveling wave dynamic, and we will discuss the mechanism that explains this biasing of local tallies whenever leakage boundary conditions are applied to the system.

Keywords

References

  1. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, Boca Raton, 1991.
  2. H. Rief, H. Kschwendt, Reactor analysis by Monte Carlo, Nuc. Sci. Eng. 30 (1967) 395-418. https://doi.org/10.13182/NSE67-A18401
  3. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, Wiley, New York, 1976.
  4. F. Brown, LA-UR-05-4983, Los Alamos National Laboratory, 2005.
  5. F. Brown, Proceedings of M&C2009, Saratoga Springs, N, USA, 2009.
  6. E.M. Gelbard, R. Prael, Computation of standard deviations in eigenvalue calculations, Prog. Nucl. Energy 24 (1990) 237. https://doi.org/10.1016/0149-1970(90)90041-3
  7. O. Jacquet, R. Chajari, X. Bay, A. Nouri, L. Carraro, Eigenvalue uncertainty evaluation in MC calculations using time series methodologies, in: Proceedings of the International Conference on Radiation Shielding, Lisbon, 2000.
  8. E. Dumonteil, F. Malvagi, Automatic treatment of the variance estimation bias in TRIPOLI-4 criticality calculations, in: "Proceedings of ICAP2012," Chicago, 2012.
  9. T. Ueki, F. Brown, D.K. Parsons, D.E. Kornreich, Autocorrelation and dominance ratio in Monte Carlo criticality calculations, Nucl. Sci. Eng. 145 (2003) 279. https://doi.org/10.13182/NSE03-04
  10. T. Ueki, F. Brown, D.K. Parsons, J.S. Warsa, Time series analysis of Monte Carlo fission sources: dominance ration computation, Nucl. Sci. Eng. 148 (2004) 374. https://doi.org/10.13182/NSE03-95
  11. W.R. Young, A.J. Roberts, G. Stuhne, Reproductive pair correlations and the clustering of organisms, Nature 412 (2001) 328. https://doi.org/10.1038/35085561
  12. B. Houchmandzadeh, Clustering of diffusing organisms, Phys. Rev. E 66 (2002) 052902.
  13. B. Houchmandzadeh, Neutral clustering in a simple experimental ecological community, Phys. Rev. Lett. 101 (2008) 078103. https://doi.org/10.1103/PhysRevLett.101.078103
  14. B. Houchmandzadeh, Theory of neutral clustering for growing populations, Phys. Rev. E 80 (2009) 051920. https://doi.org/10.1103/PhysRevE.80.051920
  15. E. Dumonteil, T. Courau, Dominance ratio assessment and Monte Carlo criticality simulations: dealing with high dominance ratio systems, Nucl. Technology 172 (2010) 120. https://doi.org/10.13182/NT10-A10899
  16. E. Dumonteil, F. Malvagi, A. Zoia, A. Mazzolo, D. Artusio, C. Dieudonne, C. de Mulatier, Particle clustering in Monte-Carlo criticality simulations, Ann. Nuc. Energy 63 (2014) 612-618. https://doi.org/10.1016/j.anucene.2013.09.008
  17. A. Zoia, E. Dumonteil, A. Mazzolo, C. De Mulatier, A. Rosso, Clustering of branching Brownian motions in confined geometries, Phys. Rev. E 90 (2014) 042118.
  18. C. De Mulatier, E. Dumonteil, A. Rosso, A. Zoia, The critical catastrophe revisited, J. Stat. Mech. 15 (2015) P08021.
  19. J.T. Cox, D. Griffeath, Ann. Probab. 13 (1985) 1108-1132. https://doi.org/10.1214/aop/1176992799
  20. T. Sutton, Anomalous behavior of Monte Carlo uncertainties near reflecting boundaries, in: Proceedings of the SNA+MC2013 conference, Paris, France, 2014.
  21. T. Sutton, Application of a discretized phase space approach to the analysis of Monte Carlo uncertainties, Nuc. Sci. Eng. 185 (2017) 174-183. https://doi.org/10.13182/NSE15-131
  22. G. Radulescu, D. Mueller, J. Wagner, Sensitivity and uncertainty analysis of commercial reactor criticals for burnup credit, Nucl. Technology 167 (2) (2009) 268-287. https://doi.org/10.13182/NT09-A8963
  23. B. Cochet, A. Jinaphanh, L. Heulers, O. Jacquet, Capabilities overview of the MORET 5 Monte Carlo code, Ann. Nucl. Energy 82 (2015) 74-84.
  24. K.B. Athreya, P.E. Ney, Branching Processes, Grundlehren Series, Springer-Verlag, New York, 1972.
  25. G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold Company, New York, 1970.
  26. T.M. Sutton, A. Mittal, Neutron clustering in Monte Carlo iterated-source calculations, in: Proceedings of theM&C 2017 Conference, Jeju, South Korea, 2017.
  27. Y.-C. Zhang, M. Serva, M. Polikarpov, Diffusion reproduction processes, J. Stat. Phys. 58 (1990) 849-861. https://doi.org/10.1007/BF01026554
  28. M. Meyer, S. Havlin, A. Bunde, Clustering of independently diffusing individuals by birth and death processes, Phys. Rev. E 54 (1996) 5567. https://doi.org/10.1103/PhysRevE.54.5567
  29. R. Fisher, The wave of advance of advantageous genes, Ann. Eugen. 7 (1937) 355-369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
  30. A. Kolmogorov, I. Petrovskii, N. Piskunov, Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, Moscow University Mathematics Bulletin 1 (1937) 1-25.
  31. D.A. Birch, W.R. Young, A master equation for a spatial population model with pair interactions, Theor. Popul. Biol. 70 (2006) 26-42. https://doi.org/10.1016/j.tpb.2005.11.007
  32. T.J. Newman, E.B. Kolomeisky, J. Antonovics, Population dynamics with global regulation: the conserved Fisher equation, Phys. Rev. Lett. 92 (2004) 228103. https://doi.org/10.1103/PhysRevLett.92.228103

Cited by

  1. Fission Matrix Decomposition Method for Criticality Calculations: Theory and Proof of Concept vol.193, pp.9, 2019, https://doi.org/10.1080/00295639.2019.1583948
  2. COUNTERING NEUTRON CLUSTERING IN MONTE CARLO WITH A NEUTRON SOURCE INJECTION vol.247, pp.None, 2017, https://doi.org/10.1051/epjconf/202124704022
  3. Data-driven fleet management using MOORA: a perspective of risk management vol.16, pp.1, 2017, https://doi.org/10.1108/jm2-03-2019-0069
  4. Patchy nuclear chain reactions vol.4, pp.1, 2017, https://doi.org/10.1038/s42005-021-00654-9