DOI QR코드

DOI QR Code

Recent developments in the GENESIS code based on the Legendre polynomial expansion of angular flux method

  • 투고 : 2017.05.28
  • 심사 : 2017.06.27
  • 발행 : 2017.09.25

초록

This paper describes recent development activities of the GENESIS code, which is a transport code for heterogeneous three-dimensional geometry, focusing on applications to reactor core analysis. For the treatment of anisotropic scattering, the concept of the simplified Pn method is introduced in order to reduce storage of flux moments. The accuracy of the present method is verified through a benchmark problem. Next, the iteration stability of the GENESIS code for the highly voided condition, which would appear in a severe accident (e.g., design extension) conditions, is discussed. The efficiencies of the coarse mesh finite difference and generalized coarse mesh rebalance acceleration methods are verified with various stabilization techniques. Use of the effective diffusion coefficient and the artificial grid diffusion coefficients are found to be effective to stabilize the acceleration calculation in highly voided conditions.

키워드

참고문헌

  1. R. Sanchez, Prospects in deterministic three-dimensional whole-core transport calculations, Nucl. Eng. Technol. 44 (2012) 113. https://doi.org/10.5516/NET.01.2012.501
  2. J.Y. Cho, H.G. Joo, K.S. Kim, S.Q. Zee, M.H. Chang, Three-dimensional heterogeneous whole core transport calculation employing planar MOC solutions, Trans. Am. Nucl. Soc. 87 (2002) 234.
  3. S. Kosaka, T. Takeda, Verification of 3D heterogeneous core transport calculation utilizing non-linear iteration technique, J. Nucl. Sci. Technol. 41 (2004) 645-654. https://doi.org/10.1080/18811248.2004.9715529
  4. H.G. Joo, J.Y. Cho, K.S. Kim, C.C. Lee, S.Q. Zee, Methods and performance of a three-dimensional whole-core transport code DeCART, in: Proc. PHYSOR 2004, Apr. 25-29, 2004 (CD-ROM).
  5. B. Kochunas, B. Collins, D. Jabaay, T.J. Downar, W.R. Martin, Overview of development and design of MPACT: Michigan Parallel Characteristics Transport Code, in: Proc. M&C2013, Sun Valley, ID, May 5-9, 2013 (CD-ROM).
  6. Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374. https://doi.org/10.1016/j.anucene.2013.06.031
  7. M. Ryu, Y.S. Junga, H.H. Cho, H.G. Joo, Solution of the BEAVRS benchmark using the nTRACER direct whole core calculation code, J. Nucl. Sci. Technol. 52 (2015) 961-969. https://doi.org/10.1080/00223131.2015.1038664
  8. M. Hursin, Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCart (Ph.D. thesis), UC Berkeley, 2010.
  9. J.B. Taylor, D. Knott, A.J. Baratta, A method of characteristics solution to the OECD/NEA 3D neutron transport benchmark problem, in: Proc. M&C + SNA 2007, Monterey, CA, 2007.
  10. Z. Liu, H. Wu, L. Cao, Q. Chen, Y. Li, A new three-dimensional method of characteristics for neutron transport calculation,, Ann. Nucl. Energy 38 (2011) 447. https://doi.org/10.1016/j.anucene.2010.09.021
  11. B. Kochunas, T.J. Downar, Z. Liu, Parallel 3-D method of characteristics in MPACT, in: Proc. M&C2013, Sun Valley, ID, May 5-9, 2013 (CD-ROM).
  12. A. Giho, K. Sakai, Y. Imamura, H. Sakurai, K. Miyawaki, Development of axially simplified method of characteristics in three-dimensional geometry, J. Nucl. Sci. Technol. 45 (2003) 985.
  13. Y. Kato, T. Endo, A. Yamamoto, Development of Legendre expansion of angular flux method for 3D MOC calculation, in: Proc. PHYSOR2014, JAEA-Conf 2014-003, Japan Atomic Energy Agency, 2014.
  14. A. Yamamoto, A. Giho, Y. Kato, T. Endo, GENESIS - a three-dimensional heterogeneous transport solver based on the Legendre polynomial expansion of angular flux method, Nucl. Sci. Eng. 186 (2017) 1-22. https://doi.org/10.1080/00295639.2016.1273002
  15. Z. Weiss, G. Ball, Ray-tracing in complicated geometries, Ann. Nucl. Energy 18 (1991) 483. https://doi.org/10.1016/0306-4549(91)90092-C
  16. T. Jevremovic, J. Vujic, K. Tsuda, ANEMONA-a neutron transport code for general geometry reactor assemblies based on the method of characteristics and R-function solid modeler, Ann. Nucl. Energy 28 (2001) 125. https://doi.org/10.1016/S0306-4549(00)00038-4
  17. S. Kosaka, E. Saji, Transport theory calculation for a heterogeneous multiassembly problem by characteristics method with direct neutron path linking technique, J. Nucl. Sci. Technol. 37 (2000) 1015. https://doi.org/10.1080/18811248.2000.9714987
  18. K. Smith, J.D. Rhodes, Full-core, 2-D, LWR core calculations with CASMO-4E, in: Proc. PHYSOR, Seoul, South Korea, 2002 (CD-ROM).
  19. A. Yamamoto, Generalized coarse-mesh Rebalance method for acceleration of neutron transport calculations, Nucl. Sci. Eng. 151 (2005) 274. https://doi.org/10.13182/NSE151-274
  20. A. Yamamoto, K. Kirimura, Y. Kamiyama, K. Yamaji, S. Kosaka, H. Matsumoto, Angular dependent transmission probability method for fast reactor core transport analysis, Trans. Am. Nucl. Soc. 112 (2015) 736.
  21. K.S. Smith, R. Ferrer, J.D. Rhodes, Linear source approximation in CASMO5, in: Proc. PHYSOR2012, Knoxville, TN, USA, April 15-20, 2012 (CD-ROM).
  22. Z. Liu, K. Smith, B. Forget, A cumulative migration method for computing rigorous transport cross sections and diffusion coefficients for LWR lattices with Monte Carlo, in: Proc. PHYSOR2016, Sun Valley, ID, May 1-5, 2016 (USB drive).
  23. Y.A. Chao, A new SPN theory formulation with self-consistent physical assumptions on angular flux, Ann. Nucl. Energy 87 (2016) 137. https://doi.org/10.1016/j.anucene.2015.08.007
  24. Y.A. Chao, A. Yamamoto, The explicit representation for the angular flux solution in simplified PN (SPN) theory, in: Proc. PHYSOR2012, Knoxville, TN, Apr. 15-20, 2012 (CD-ROM).
  25. R. Roy, Anisotropic scattering for integral transport codes: Part 2. Cyclic tracking and its application to XY lattices, Ann. Nucl. Energy 18 (1991) 511. https://doi.org/10.1016/0306-4549(91)90096-G
  26. M. Jarrett, B. Kochunas, A. Zhu, T. Downar, Analysis of stabilization techniques for CMFD acceleration of neutron transport problems, Nucl. Sci. Eng. 184 (2016) 208. https://doi.org/10.13182/NSE16-51
  27. E. Larsen, Infinite medium solutions to the transport equation, S_n discretization schemes, and the diffusion approximation, in: Proceedings of the Joint International Topical Meeting on Mathematics and Computation and Supercomputing in Nuclear Applications, Salt Lake City, UT, USA, 2001.
  28. L. Li, A Low Order Acceleration Scheme for Solving the Neutron Transport Equation, Massachusetts Institute of Technology, Cambridge, MA, 2013.
  29. OECD/NEA, Benchmark on Deterministic Transport Calculations Without Spatial Homogenisation - MOX Fuel Assembly 3-D Extension Case, vol. 16, NEA/NSC/DOC(2005), 2005.
  30. S. Yuk, N.Z. Cho, Comparison of 1-D/1-D fusion method and 1-D/1-D hybrid method in two-dimensional neutron transport problems: convergence analysis and numerical results, Nucl. Sci. Eng. 184 (2016) 151. https://doi.org/10.13182/NSE15-128

피인용 문헌

  1. Transport consistent diffusion coefficient for CMFD acceleration and comparison of convergence properties vol.56, pp.8, 2017, https://doi.org/10.1080/00223131.2019.1618405
  2. Impact of Various Parameters on Convergence Performance of CMFD Acceleration for MOC in Multigroup Heterogeneous Geometry vol.194, pp.6, 2017, https://doi.org/10.1080/00295639.2020.1722512