DOI QR코드

DOI QR Code

Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66-68Zn targets

  • Yigit, M. (Faculty of Science and Arts, Department of Physics, Km Main Campus, Aksaray University) ;
  • Kara, A. (Faculty of Engineering, Department of Energy Systems Engineering, Ahmet Taner Kislali Cd. Campus, Giresun University)
  • 투고 : 2017.02.03
  • 심사 : 2017.03.28
  • 발행 : 2017.08.25

초록

In this paper, nuclear data for cross sections of the $^{64}Zn(n,2n)^{63}Zn$, $^{64}Zn(n,3n)^{62}Zn$, $^{64}Zn(n,p)^{64}Cu$, $^{66}Zn(n,2n)^{65}Zn$, $^{66}Zn(n,p)^{66}Cu$, $^{67}Zn(n,p)^{67}Cu$, $^{68}Zn(n,p)^{68}Cu$, and $^{68}Zn(n,{\alpha})^{65}Ni$ reactions were studied for neutron energies up to 40 MeV. In the nuclear model calculations, TALYS 1.6, ALICE/ASH, and EMPIRE 3.2 codes were used. Furthermore, the nuclear data for the (n,2n) and (n,p) reaction channels were also calculated using various cross-section systematics at energies around 14-15 MeV. The code calculations were analyzed and obtained using the different level densities in the exciton model and the geometry-dependent hybrid model. The results obtained from the excitation function calculations are discussed and compared with literature experimental data, ENDF/B-VII.1, and the TENDL-2015 evaluated data.

키워드

참고문헌

  1. M. Yigit, E. Tel, I.H. Sarpun, Excitation function calculations for ${\alpha}+^{93}Nb$ nuclear reactions, Nucl. Instrum. Methods Phys. Res. B 385 (2016) 59-64. https://doi.org/10.1016/j.nimb.2016.08.019
  2. M. Yigit, E. Tel, Reaction cross sections in the interactions of neutrons with Yttrium nucleus, J. Radioanal. Nucl. Chem. 306 (2015) 203-211. https://doi.org/10.1007/s10967-015-4070-0
  3. M. Yigit, Theoretical predictions of excitation functions of neutron-induced reactions on 6Li, 9Be, 12C and 23Na nuclei at low energies, J. Fusion Energy 34 (2015) 140-147. https://doi.org/10.1007/s10894-014-9773-7
  4. M. Yigit, E. Tel, Nuclear model calculation for production of $^{18}F$, $^{22}Na$, $^{44,46}Sc$, $^{54}Mn$, $^{64}Cu$, $^{68}Ga$, $^{76}Br$ and $^{90}Y$ radionuclides used in medical applications, Ann. Nucl. Energy 69 (2014) 44-50. https://doi.org/10.1016/j.anucene.2014.01.036
  5. J. Luo, F. Tuo, X. Kong, Activation cross sections and isomeric cross section ratios for $^{184}Os(n,2n)^{183m,g}Os$, $^{190}Os(n,p)^{190m,g}Re$ and $^{86}Sr(n,2n)^{85m,g}S$r reactions from 13.5 to 14.8 MeV, J. Radioanal. Nucl. Chem. 279 (2009) 443-454. https://doi.org/10.1007/s10967-007-7333-1
  6. Y. Song, F. Zhou, M. Tian, Y. Li, S. Yuan, C. Lan, Measurements of the cross section for the $^{182}W(n,p)^{182(m+g)}Ta$ and $^{184}(n,p)^{184}Ta$ reactions in the 14 MeV energy range using the activation technique, Appl. Radiat. Isot 98 (2015) 29. https://doi.org/10.1016/j.apradiso.2014.11.018
  7. S. Ait-Tahar, The systematics of (n,p) cross sections for 14 MeV neutrons, J. Phys. G Nucl. Part Phys. 13 (1987) 121-125. https://doi.org/10.1088/0305-4616/13/2/003
  8. J. Luo, F. Tuo, F. Zhou, X. Kong, Semi-empirical systematics for the cross-sections of the reactions (n,${\alpha}$), (n,p) and (n,2n) at 14.5 MeV neutrons on the basis of experimental data measured by Lanzhou University, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 4862-4868. https://doi.org/10.1016/j.nimb.2008.07.029
  9. E. Tel, S. Okuducu, M.H. Bolukdemir, G. Tanir, Semi-empirical systematics of (n, 2n),(n, ${\alpha}$) reactions cross sections at 14-15 MeV neutron energy, Int. J. Mod. Phys. E 17 (2008) 567-583.
  10. A. Adam, L. Jeki, On the shell effect in (n,2n) reaction cross-sections, Acta Phys. Acad. Sci. Hung. 26 (1969) 335-338. https://doi.org/10.1007/BF03157471
  11. C. Konno, Y. Ikeda, K. Osihi, K. Kawade, H. Yamamoto, H. Maekawa, Activation Cross Section Measurements at Neutron Energy From 13.3 to 14.9 Mev Using the FNS Facility, JAERI Rep. No. 1329, Japan Atomic Energy Research Institute, Tokyo, Japan, 1993.
  12. A. Kara, T. Korkut, M. Yigit, E. Tel, Modelling study on production cross sections of $^{111}In$ radioisotopes used in nuclear medicine, Kerntechnik 80 (2015) 270-274. https://doi.org/10.3139/124.110527
  13. M. Eslami, T. Kakavand, M. Mirzaiic, Theoretical approach to study the light particles induced production routes of $^{22}Na$, Ann. Nucl. Energy 83 (2015) 14-24. https://doi.org/10.1016/j.anucene.2015.04.004
  14. B. Demir, A. Kaplan, V. Capali, H. Ozdogan, I.H. Sarpun, A. Aydin, E. Tel, Neutron production cross-section and Geant4 calculations of the structural fusion material $^{59}Co$ for (${\alpha}$, xn) and (${\gamma}$ xn) reactions, J. Fusion Energy 34 (2015) 636-641. https://doi.org/10.1007/s10894-015-9860-4
  15. A. Kaplan, I.H. Sarpun, A. Aydin, E. Tel, V. Capali, H. Ozdogan, (${\gamma}$,2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models, Phys. At. Nucl. 78 (2015) 53-64. https://doi.org/10.1134/S106377881501010X
  16. C.H.M. Broeders, A. Yu Konobeyev, YuA. Korovin, V.P. Lunev, M. Blann, ALICE-ASH Manual (FZK 7183) [Internet], May 2006 [cited 2016 May 2]. Available from: http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf.
  17. A. Koning, S. Hilaire, S. Goriely, TALYS 1.6 Code [Internet], 2013 [cited 2016 May 2]. Available from: http://www.talys.eu/download-talys/.
  18. M. Herman, R. Capote, M. Sin, A. Trkov, B. Carlson, D. Brown, G. Nobre, P. Oblozinsky, C. Mattoon, H. Wienke, S. Hoblit, Y.-S. Cho, V. Plujko, V. Zerkin, EMPIRE-3.2 (Malta) [Internet], 2013 [cited 2016 May 2]. Available from: http://www.nndc.bnl.gov/empire/main.html.
  19. V.N. Levkovskii, Empirical Behavior of the (n, p) Cross Section for 14-15 MeV Neutrons, JETP Sov. Phys. 18 (1964) 213-217.
  20. E. Tel, B. Sarer, S. Okuducu, A. Aydin, G. Tanir, A new empirical formula for 14-15 MeV neutron-induced (n,p) reaction cross sections, J. Phys. G Nucl. Part Phys. 29 (2003) 2169-2177. https://doi.org/10.1088/0954-3899/29/9/311
  21. W. Lu, R.W. Fink, Applicability of the constant-nuclear-temperature approximation in statistical-model calculations of neutron cross sections at 14.4 MeV for medium-z nuclei, Phys. Rev. C 4 (1971) 1173. https://doi.org/10.1103/PhysRevC.4.1173
  22. Y. Kasugai, Y. Ikeda, H. Yamamoto, K. Kawade, Systematics for (n,p) excitation functions in the neutron energy between 13.3 and 15.0 MeV, Ann. Nucl. Energy 23 (1996) 1429-1444. https://doi.org/10.1016/0306-4549(95)00114-X
  23. R. Doczi, V. Semkova, A.D. Majdeddin, C.M. Buczko, J. Csikai, Investigations on (n,p) Cross Sections in the 14 MeV Region, INDC(HUN)-032, IAEA-NDS, 1997. Vienna, Austria.
  24. I. Kumabe, K.J. Fukuda, Empirical formulas for 14-MeV (n,p) and (n,${\alpha}$) cross sections, Nucl. Sci. Tech. 24 (1987) 839-843. https://doi.org/10.1080/18811248.1987.9735887
  25. V.M. Bychkov, V.N. Manokhin, A.B. Pashchenko, V.I. Plyashin, Cross Sections for the (n,p), (n,a) and (n,2n) Threshold Reactions, INDC(CCP)-146, IAEA-NDS, 1980. Vienna, Austria.
  26. F.I. Habbani, K.T. Osman, Systematics for the cross-sections of the reactions (n,p),(n, ${\alpha}$) and (n, 2n) at 14.5 MeV neutrons, Appl. Radiat. Isot. 54 (2001) 283-290. https://doi.org/10.1016/S0969-8043(00)00275-X
  27. M.K. Sharma, H.D. Bhardwaj, Unnati, P.P. Singh, B.P. Singh, R. Prasad, A study of preequilibrium emission of neutrons in $^{93}Nb$(${\alpha}$, xn) reactions, Eur. Phys. J. A 31 (2007) 43-51. https://doi.org/10.1140/epja/i2005-10318-5
  28. J.J. Griffin, Statistical model of intermediate structure, Phys. Rev. Lett. 17 (1966) 478. https://doi.org/10.1103/PhysRevLett.17.478
  29. A.J. Koning, M.C. Duijvestijn, A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential, Nucl. Phys. A 744 (2004) 15. https://doi.org/10.1016/j.nuclphysa.2004.08.013
  30. M. Blann, H.K. Vonach, Global test of modified pre-compound decay models, Phys. Rev. C 28 (1983) 1475-1492.
  31. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, The role of collective effects for nuclear level density systematics, Yadernaja Fizika 29 (1979) 875.
  32. A. D'Arrigo, G. Giardina, M. Herman, A.V. Ignatyuk, A. Taccone, Semi-empirical determination of the shell correction temperature and spin dependence by means of nuclear fission, J. Phys. G 20 (1994) 365. https://doi.org/10.1088/0954-3899/20/2/015
  33. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections, Can. J. Phys. 43 (1965) 1446. https://doi.org/10.1139/p65-139
  34. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Level density parameters for the backshifted fermi gas model in the mass range 40, Nucl. Phys. A 217 (1973) 269. https://doi.org/10.1016/0375-9474(73)90196-6
  35. A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Density of discrete levels in $^{116}Sn$, Phys. Rev. C 47 (1993) 1504. https://doi.org/10.1103/PhysRevC.47.1504
  36. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, The role of collective effects in the systematics of nuclear level densities, Sov. J. Nucl. Phys. 29 (1979) 450.
  37. C.K. Cline, M. Blann, The pre-equilibrium statistical model: description of the nuclear equilibration process and parameterization of the model, Nucl. Phys. A 172 (1971) 225. https://doi.org/10.1016/0375-9474(71)90713-5
  38. C.K. Cline, Extensions to the pre-equilibrium statistical model and a study of complex particle emission, Nucl. Phys. A 193 (1972) 417. https://doi.org/10.1016/0375-9474(72)90330-2
  39. I. Ribansky, P. Oblozhinsky, E. Betak, Pre-equilibrium decay and the exciton model, Nucl. Phys. A 205 (1973) 545. https://doi.org/10.1016/0375-9474(73)90705-7
  40. M. Yigit, E. Tel, A systematic study for cross sections on (d,2n) nuclear reactions between 11.57 and 18.91 MeV, J. Fusion Energy 35 (2016) 585-590. https://doi.org/10.1007/s10894-016-0066-1
  41. M. Yigit, Empirical formula on (n,$^3He$) reaction cross sections at 14.6 MeV neutrons, Appl. Radiat. Isot. 105 (2015) 15-19. https://doi.org/10.1016/j.apradiso.2015.07.016
  42. M. Yigit, E. Tel, Cross section systematics of (d,p) reactions at 8.5 MeV, Nucl. Eng. Des. 280 (2014) 37-41. https://doi.org/10.1016/j.nucengdes.2014.09.018
  43. M. Yigit, E. Tel, A study on empirical systematic for the (d,n) reaction cross sections at 8.6 MeV, Kerntechnik 79 (2014) 488-493. https://doi.org/10.3139/124.110441
  44. C.H.M. Broeders, A.Yu Konobeyev, Systematics of (p,${\alpha}$) (p,n${\alpha}$), and (p,np) reaction cross sections, Appl. Radiat. Isotop. 6 (2007) 1249.
  45. ENDF (Evaluated Nuclear Data File) [Internet], ENDF/B-VII.1 (USA), 2011 [cited 2017 May 2]. Available from: http://www.nndc.bnl.gov/exfor/endf00.jsp.
  46. A.J. Koning, D. Rochman, J. Kopecky, J. Ch Sublet, M. Fleming, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S.C. vanderMarck, S. Pomp, H. Sjostrand, R. Forrest, H. Henriksson, O. Cabellos, S. Goriely, J. Leppanen, H. Leeb, A. Plompen, R. Mills, TALYS-Based Evaluated Nuclear Data Library (TENDL) Data Library [Internet], 2015 [cited 4 May 2017]. Available from: https://tendl.web.psi.ch/tendl_2015/tendl2015.html.
  47. Y. Uwamino, H. Sugita, Y. Kondo, T. Nakamura, Measurement of neutron activation cross sections of energy up to 40 MeV using semimonoenergetic p-Be neutrons, Nucl. Sci. Eng. 111 (1992) 391. https://doi.org/10.13182/NSE111-391
  48. A.V. Cohen, P.H. White, The excitation curves of some (n,p) processes induced by neutrons of 12.5-17.5 Mev energy, Nucl. Phys. 1 (1956) 73. https://doi.org/10.1016/S0029-5582(56)80009-6
  49. A. Paulsen, H. Liskien, Excitation functions for the reactions $^{58}Ni(n,2n)^{57}Ni$, $^{65}Cu(n,2n)^{64}Cu$ and $^{64}Zn(n,2n)^{63}Zn$ in the Energy Range 12.6 to 19.6 MeV, Nukleonik 7 (1965) 117.
  50. C. Bhatia, W. Tornow, Measurement of the $^{64}Zn(n,2n)^{63}Zn$ reaction cross section between 12.5 and 14.5 MeV, J. Phys. G 40 (2013) 065104. https://doi.org/10.1088/0954-3899/40/6/065104
  51. W. Mannhart, D. Schmidt, Measurement of Neutron Activation Cross Sections in the Energy Range from 8 MeV to 15 MeV, Neutronenphysik Rep. No. 53, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany, 2007.
  52. M. Bormann, B. Lammers, Excitation functions of (n,p) and (n,2n) reactions for some isotopes of K, Mn, Zn and Cu, Nucl. Phys. A 130 (1969) 195. https://doi.org/10.1016/0375-9474(69)90971-3
  53. T. Shiokawa, M. Yagi, H. Kaji, T. Sasaki, The $^{19}F(n,2n)^{18}F$ reaction as a 14-MeV neutron flux monitor, J. Inorg. Nucl. Chem. 30 (1968) 1. https://doi.org/10.1016/0022-1902(68)80054-5
  54. J. Vrzalova, O. Svoboda, A. Krasa, A. Kugler, M. Majerle, M. Suchopar, V. Wagner, Studies of (n,xn) cross-sections in Al, Au, Bi, Cu, Fe, I, In, Mg, Ni, Ta, Y, and Zn by the activation method, Nucl. Instrum. Methods Phys. Res. A 726 (2013) 84. https://doi.org/10.1016/j.nima.2013.05.133
  55. T.S. Soewarsono, Y. Uwamino, T. Nakamura, Neutron Activation Cross Section Measurement from $^7Li(p,n)$ in the Proton Energy Region of 20 MeV to 40 MeV, JAERI Rep. No. M-027, Japan Atomic Energy Research Institute, Tokyo, Japan, 1992, p. 354.
  56. X. Huang, W. Yu, X. Han, W. Zhao, H. Lu, J. Chen, Z. Shi, G. Tang, G. Zhang, The effect of low-energy neutrons on activation cross-section measurement,, Nucl. Sci. Eng. 131 (1999) 267-274. https://doi.org/10.13182/NSE99-A2033
  57. D.C. Santry, J.P. Butler, Excitation curves for the reactions of fast neutrons with zinc, Can. J. Phys. 50 (1972) 2536. https://doi.org/10.1139/p72-336
  58. F. Gabbard, B.D. Kern, Cross sections for charged particle reactions induced in medium weight nuclei by neutrons in the energy range 12-18 MeV, Phys. Rev. 128 (1962) 1276. https://doi.org/10.1103/PhysRev.128.1276
  59. M. Viennot, A.A. Haddou, A. Chiadli, G. Paic, Excitation functions of (N,P) reactions in the region 13.75 to 15 MeV for Ti, Fe and Ni isotopes, in: K.H. Bockhoff (Ed.), Proceedings of the International Conference on Nuclear Data for Science and Technology, Springer, Berlin, Germany, 1982, pp. 406-408.
  60. A. Paulsen, H. Liskien, R. Widera, Cross sections of (n,2n) reactions for Ti-46,Zn-66, In-115 and Au-197, Atomkernenergie 26 (1975) 34.
  61. L. Hanlin, Z. Wenrong, Y. Weixiang, Activation cross section of Zn and Zr for 13-18 MeV neutrons, Chin. J. Nucl. Phys. 13 (1991) 11.
  62. M. Wagner, G. Winkler, H. Vonach, Cs M. Buczko, J. Csikai, Measurement of the cross sections for the reactions $^{52}Cr(n,2n)^{51}Cr$, $^{66}Zn(n,2n)^{65}Zn$, $^{89}Y(n,2n)^{88}Y$ and $^{96}Zr(n,2n)^{95}Zr$ from 13.5 to 14.8 MeV, Ann. Nucl. Energy 16 (1989) 623. https://doi.org/10.1016/0306-4549(89)90139-4
  63. J. Csikai, G. Peto, Influence of direct inelastic scattering on (n,2n) cross sections, Acta Phys. Hung. 23 (1967) 87. https://doi.org/10.1007/BF03157358
  64. D.L. Smith, J.W. Meadows, Activation cross sections for $^{66}Zn(n,p)$ $^{66}Cu$, Nucl. Sci. Eng. 76 (1980) 61. https://doi.org/10.13182/NSE80-A19295
  65. Y. Kasugai, H. Yamamoto, K. Kawade, T. Iida, Measurements of (n,p) crosssections for short-lived products by 13.4-14.9 MeV neutrons, Ann. Nucl. Energy 25 (1998) 23. https://doi.org/10.1016/S0306-4549(97)00040-6
  66. S.K. Ghorai, P.M. Sylva, J.R. Williams, W.L. Alford, Partial neutron cross sections for 64Zn, 66Zn, 67Zn and 68Zn between 14.2 and 18.2 MeV, Ann. Nucl. Energy 22 (1995) 11. https://doi.org/10.1016/0306-4549(94)P3960-P
  67. D. Kielan, A. Marcinkowski, Cross sections for the (n,p) reaction on zinc isotopes in terms of the novel multistep compound reaction model, Z. Phys. A 352 (1995) 137. https://doi.org/10.1007/BF01298899
  68. M. Bormann, E. Fretwurst, P. Schehka, G. Wrege, H. Buttner, A. Lindner, H. Meldner, Some excitation functions of neutron induced reactions in the energy range 12.6-19.6 MeV, Nucl. Phys. 63 (1965) 438-448. https://doi.org/10.1016/0029-5582(65)90474-8
  69. N. Ranakumar, E. Kondaiah, R.W. Fink, 14 MeV cross sections of silicon and zinc isotopes, Bull. Am. Phys. Soc. 13 (1968) 602.
  70. G.P. Vinitskaya, V.N. Levkovskiy, V.V. Sokolskiy, I.V. Kazachevskiy, Cross sections of the (n,p) and (n,a) reactions at neutron energy 14.8 MeV, Yadernaya Fizika 6 (1967) 240.
  71. C. Nesaraja, K.H. Linse, S. Spellerberg, S. Sudar, A. Suhaimi, J. Csikai, A.Fessler, S.M. Qaim, Excitation functions of neutron induced reactions on some isotopes of zinc, gallium and germanium in the energy range of 6.2 to 12.4 MeV, Radiochim. Acta 86 (1999) 1. https://doi.org/10.1524/ract.1999.86.12.1
  72. J.L. Casanova, M.L. Sanchez, Measurement of the (n,p), (n,a), (n,2n) cross sections of Zn, Ga, Ge, As and Se for 14.1 MeV neutrons and (n,p) cross section analysis, An. Fisicay Quim 72 (1976) 186.
  73. A.A. Filatenkov, S.V. Chuvaev, V.N. Aksenov, V.A. Jakovlev, Systematic Measurement of Activation Cross Sections at Neutron Energies from 13.4 to 14.9 MeV. reportKhlopin Radiev Institute Leningrad Rep. No. 252, 1999.
  74. M. Valkonen, P. Homberg, R. Rieppo, J.K. Keinaenen, J. Kantele, Studies of 14 MeV Neutron Activation Cross Sections with Special Reference to the Capture Reaction, reportRep. No. 1, Department of Physics, University of Jyvaeskylae, 1976.
  75. R. Prasad, D.C. Sarkar, Measured (n,p) reaction cross-sections and their predicted values at 14. 8 MeV, Nuovo Cimento A 3 (1971) 467. https://doi.org/10.1007/BF02823319
  76. N.I. Molla, R.U. Miah, S. Basunia, S.M. Hossain, M. Rahman, Cross Sections of (n,p), (n,a) and (n,2n) Processes on Scandium, Vanadium, Cobalt, Copper and Zinc Isotope in the Energy Range 13.57-14.71 MeV, International Conference on Nuclear Data for Science and Technology vol. 2, American Nuclear Society, La Grange Park, IL, 1994, p. 938.
  77. M. Herman, A. Marcinkowski, J. Dresler, U. Garuska, Cross sections for the fast neutron induced reactions on Si and Zn isotopes, Rep. No. 1871, Inst. Badan Jadr. (Nucl. Res.) (1980) 13. Swierk Warsaw.
  78. Experimental Nuclear Reaction Data (EXFOR) [Internet], 2016 [cited 2016 May 2]. Available from: http://www.nndc.bnl.gov/exfor/exfor.htm.

피인용 문헌

  1. Simulation study of the proton-induced reaction cross sections for the production of 18F and 66-68Ga radioisotopes vol.314, pp.3, 2017, https://doi.org/10.1007/s10967-017-5613-3
  2. Theoretical study of cross sections of proton-induced reactions on cobalt vol.50, pp.3, 2017, https://doi.org/10.1016/j.net.2018.01.008
  3. Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor vol.51, pp.1, 2017, https://doi.org/10.1016/j.net.2018.08.008
  4. Determination of nuclear excitation functions of zirconium using certain level density parameters for neutron-induced reactions vol.93, pp.11, 2017, https://doi.org/10.1007/s12648-019-01415-9
  5. Investigation of nuclear reaction mechanisms of Nickel isotopes at various energies induced by alpha particles vol.3, pp.11, 2017, https://doi.org/10.1088/2399-6528/ab589f
  6. A new study on (n, p) cross sections in nuclear interactions of neutrons with dysprosium vol.93, pp.12, 2019, https://doi.org/10.1007/s12648-019-01428-4
  7. Analysis of the reaction $ Q$ -value effect using newly evaluated empirical formulas of $ (n,2n)$ cross-sections near 14.6 $ \,$ MeV vol.29, pp.2, 2017, https://doi.org/10.1142/s0218301320500056
  8. Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas vol.52, pp.4, 2020, https://doi.org/10.1016/j.net.2019.10.009
  9. A new empirical formula for cross-sections of (n,n $ \alpha $ ) reactions vol.29, pp.8, 2020, https://doi.org/10.1142/s0218301320500627
  10. Cross sections for the $$\left( {n, p} \right)$$ reaction of selenium isotopes within 10.5 to 19.81 MeV neutron energies vol.136, pp.3, 2021, https://doi.org/10.1140/epjp/s13360-021-01299-x