DOI QR코드

DOI QR Code

Identification and characterization of the MYC2 gene in relation to leaf senescence response in hybrid poplar (Populus alba × P. glandulosa)

현사시나무에서 MYC2 유전자의 분리 및 노화 지연에 관한 특성 구명

  • Choi, Hyunmo (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Bae, Eun-Kyung (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Cho, Jin Seong (Department of Plant and Environmental New Resources, Kyung Hee University) ;
  • Lee, Hyoshin (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Choi, Young-Im (Forest Biotechnology Division, National Institute of Forest Science)
  • 최현모 (국립산림과학원 산림생명공학과) ;
  • 배은경 (국립산림과학원 산림생명공학과) ;
  • 조진성 (경희대학교 식물환경신소재공학과) ;
  • 이효신 (국립산림과학원 산림생명공학과) ;
  • 최영임 (국립산림과학원 산림생명공학과)
  • Received : 2017.09.20
  • Accepted : 2017.11.16
  • Published : 2017.12.31

Abstract

The vegetation period of trees might be prolonged by the delay of the leaf senescence in autumn. Thus, we focused on the generation of senescence-delayed transgenic trees to enhance biomass production. The PagMYC2, a gene containing the basic helix-loop-helix domain, was selected as a candidate for a senescence-delayed transgenic tree. The PagMYC2 gene was specifically induced after treatment with phytohormone jasmonic acid, and upregulated by abiotic stresses such as salinity, osmotic pressure and a low temperature. The constitutive overexpression of the PagMYC2 delayed the leaf senescence and inhibited chlorophyll degradation in the transgenic poplars. Leaf senescence analysis was performed in the leaf tissues of the PagMYC2-over-expression transgenic poplars. The transgenic poplars exhibited higher photochemical efficiency than did a wild type plant under a short-day condition (6 hours light/18 hours darkness) or a low temperature condition ($15^{\circ}C$) that was similar to the weather conditions of autumn. These results suggest that the PagMYC2 is a useful genetic resource to improve biomass production, which is able to sustain growth with senescence-delayed leaves for a long time in autumn.

JA는 병원균과 곤충에 대한 방어기작 뿐만 아니라 식물 노화에도 관여하는 식물 호르몬이다. Basic helix-loop-helix 전사인자인 MYC2는 JA의 신호전달반응의 핵심조절자 역할을 하는 것으로 알려져 있다. 본 연구에서는 현사시나무에서 MYC2 유전자를 분리하고 발현특성을 조사하였으며, 다양한 환경 스트레스에 대한 내성을 갖는 임목을 생산하기 위하여 MYC2를 과발현시킨 현사시나무를 개발하였다. 포트에 식재된 MYC2 과발현 현사시나무는 대조구에 비해 잎 노화 표현형이 지연되는 특징을 보였으며, 엽록소 손실이 적은 것으로 나타났다. 또한 가을의 온도 및 광 주기 조건에서 MYC2 과발현 현사시나무의 광화학 효율을 측정한 결과 대조구보다 높은 특징을 보였다. 따라서 현사시나무의 MYC2 유전자가 낙엽이 지는 가을 동안에도 지속적인 생장을 가능하게 하여 임목의 바이오매스를 증진시키는데 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. Abe, H, Urao, T, Ito, T, Seki, M, Shinozaki, K, Yamaguchi-Shinozaki, K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63-78 https://doi.org/10.1105/tpc.006130
  2. Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM (2005) Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol 167:63-72 https://doi.org/10.1111/j.1469-8137.2005.01388.x
  3. Chen, M, Maodzeka, A, Zhou, L, Ali, E, Wang, Z, Jiang, L (2014) Removal of DELLA repression promotes leaf senescence in Arabidopsis. Plant Sci 219-220:26-34 https://doi.org/10.1016/j.plantsci.2013.11.016
  4. Cheng Z, Sun L, Qi T, Zhang B, Peng W, Liu Y, Xie D (2011) The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol Plant 4:279-288 https://doi.org/10.1093/mp/ssq073
  5. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666-671 https://doi.org/10.1038/nature06006
  6. Choi YI, Noh EW, Lee HS, Han MS, Lee JS, Choi KS (2005) An efficient and novel plant-selectable marker based on organomercurial resistance. J Plant Biol 48:351-355 https://doi.org/10.1007/BF03030576
  7. Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico J.M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701-715 https://doi.org/10.1105/tpc.110.080788
  8. Gan S, Amasino RM (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986-1988 https://doi.org/10.1126/science.270.5244.1986
  9. He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876-884 https://doi.org/10.1104/pp.010843
  10. Hortensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55-77 https://doi.org/10.1146/annurev.arplant.57.032905.105212
  11. Hudgins JW, Christiansen E, Franceschi VR (2003) Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol 23:361-371 https://doi.org/10.1093/treephys/23.6.361
  12. Hudgins JW, Christiansen E, Franceschi VR (2004) Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol 24:251-264 https://doi.org/10.1093/treephys/24.3.251
  13. John I, Drake R, Farrell A, Cooper W, Lee P, Horton P, Grierson D (1995) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants - molecular and physiological analysis. Plant J 7:483-490 https://doi.org/10.1046/j.1365-313X.1995.7030483.x
  14. Kazan K, Manners JM (2013) MYC2: The Master in Action. Mol Plant 6(3):686-703 https://doi.org/10.1093/mp/sss128
  15. Lee HS, Lee JS, Noh EW, Bae EK, Choi YI, Han MS (2005) Generation and analysis of expressed sequence tags from poplar suspension cells. Plant Sci 169:1118-1124 https://doi.org/10.1016/j.plantsci.2005.07.013
  16. Lee SH, Sakuraba Y, Lee T, Kim KW, An G, Lee HY, Paek NC (2015) Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. J Integr Plant Biol 57: 562-576 https://doi.org/10.1111/jipb.12276
  17. Li Z, Peng J, Wen X, Guo H (2013) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311-3328 https://doi.org/10.1105/tpc.113.113340
  18. Lohman KN, Gan SS, John MC, Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92:322-328 https://doi.org/10.1111/j.1399-3054.1994.tb05343.x
  19. Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015-1024 https://doi.org/10.1104/pp.120.4.1015
  20. Niu Y, Figueroa P, Browse J (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62:2143-2154 https://doi.org/10.1093/jxb/erq408
  21. Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527-535 https://doi.org/10.1046/j.1365-313X.1997.00527.x
  22. Park JH, Oh SA, Kim YH, Woo HR, Nam HG (1998) Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol Biol 37:445-454 https://doi.org/10.1023/A:1005958300951
  23. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788-791 https://doi.org/10.1038/nature08854
  24. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: 2002-2007
  25. Pourtau N, Mares M, Purdy S, Quentin N, Ruel A, Wingler A (2004) Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219:765-772
  26. Quirino BF, Noh Y-S, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5(7): 278-282 https://doi.org/10.1016/S1360-1385(00)01655-1
  27. Rowe HC, Walley JW, Corwin J, Chan EK, Dehesh K, Kliebenstein DJ (2010) Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog 6: e1000861 https://doi.org/10.1371/journal.ppat.1000861
  28. Schweizer F, Fernandez-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117-3132 https://doi.org/10.1105/tpc.113.115139
  29. Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D (2011) The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751-764 https://doi.org/10.1104/pp.110.166595
  30. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe G, Zheng N (2010) Jasmonate perception by inositol-phosphatepotentiated COI1-JAZ co-receptor. Nature 468:400-405 https://doi.org/10.1038/nature09430
  31. Simpson RJ, Dalling MJ (1981) Nitrogen Redistribution During Grain Growth in Wheat (Triticum aestivum L.): III. Enzymology and Transport of Amino Acids from Senescing Flag Leaves. Planta 151(5):447-456 https://doi.org/10.1007/BF00386538
  32. Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419-448 https://doi.org/10.1111/j.1469-8137.1994.tb04243.x
  33. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura L, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF-COI1 complex during jasmonate signaling. Nature 448:661-665 https://doi.org/10.1038/nature05960
  34. Thomas H, Smart CM (1993) Crops that stay green. Ann Appl Biol 123:193-219 https://doi.org/10.1111/j.1744-7348.1993.tb04086.x
  35. Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455-469 https://doi.org/10.1023/A:1005934428906
  36. Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779-1790 https://doi.org/10.1105/tpc.13.8.1779
  37. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091-1094 https://doi.org/10.1126/science.280.5366.1091
  38. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream Mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470-2483 https://doi.org/10.1105/tpc.107.050708
  39. Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220-2236 https://doi.org/10.1105/tpc.109.065730
  40. Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJ, Kolomiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420-1436 https://doi.org/10.1105/tpc.111.094151
  41. Yang J, Worley E, Udvardi M (2014) A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves. Plant Cell 26:4862-4874 https://doi.org/10.1105/tpc.114.133769
  42. Zhang K, Halitschke R, Yin C, Liu C-J, Gan S-S (2013) Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci USA 110:14807-14812 https://doi.org/10.1073/pnas.1302702110