DOI QR코드

DOI QR Code

Genotype analysis of genes involved in increasing grain number per panicle in rice germplasm

벼 유전자원의 수당립수 증진 유전자 유전형 분석

  • Shin, Dongjin (Department of Southern Area Crop Science, National Institute of Crop Science, RDA) ;
  • Kim, Tae-Heon (Department of Southern Area Crop Science, National Institute of Crop Science, RDA) ;
  • Lee, Ji-Yoon (Department of Southern Area Crop Science, National Institute of Crop Science, RDA) ;
  • Cho, Jun-Hyun (Department of Southern Area Crop Science, National Institute of Crop Science, RDA) ;
  • Lee, Jong-Hee (Research Policy Bureau, RDA) ;
  • Song, You-Chun (Department of Southern Area Crop Science, National Institute of Crop Science, RDA) ;
  • Park, Dong-soo (Department of Southern Area Crop Science, National Institute of Crop Science, RDA) ;
  • Oh, Myeong-Kyu (Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
  • 신동진 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 김태헌 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 이지윤 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 조준현 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 이종희 (농촌진흥청 연구정책국) ;
  • 송유천 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 박동수 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 오명규 (농촌진흥청 국립식량과학원 남부작물부)
  • Received : 2017.11.07
  • Accepted : 2017.11.13
  • Published : 2017.12.31

Abstract

ARice is an important staple food in the world and rice yield is one of the main traits for rice breeding. Several genes involved in increasing the yield have been identified through map-based gene cloning within natural variations in rice. These identified genes are good targets for introducing a genetic trait in molecular breeding. Here, we chose five genes reported to be involved in increasing grain number per panicle in rice; Gn1a, dep1, Apo1, Ghd7, and Nal1. We developed In/Del markers for Gn1a, and dep1, Apo1, and applied the reported SNP markers for Ghd7 and Nal1. We were easily able to examine the genotype of each gene on agarose gel. We tested the genotypes on 479 rice resources that we held with evaluated molecular markers. According to the genotype of each gene, rice resources were divided into 13 haplotypes, and most of the Indica and Japonica varieties were included in haplotypes 1 and 13, respectively. When we examined the effect of each gene on grain number per panicle and panicle number per plant, panicle number per plant in the yield negative allele group for each gene was reduced by approximately 0.3 to 0.8 compared to that in the yield positive allele group. However, the number of yield positive alleles for each gene was higher by about 21 to 27 grains per panicle than that of yield negative alleles. Although most of the varieties were grouped in haplotypes 1 and 13, we believe that this genotype information with evaluated molecular markers will be useful in rice breeding for increasing the yield with grain number per panicle.

벼 수량성 증진을 위하여 수당립수 증진 유전자로 보고된 5종의 유전자에 대한 분자표지를 검정하고 유전자원 479점에서 이들의 유전자에 대한 유전형을 검정하였다. 판독이 용이한 Gn1a및 DEP1, Apo1유전자의 In/del 분자표지를 각각 개발하였고 Ghd7과 Nal1 유전자에 대하여서는 기존 보고된 SNP 분자표지를 이용하여 편리성을 검정하였다. 이들 분자표지는 아가로즈젤에서 각각의 유전형 판독이 용이하기에 벼 수량성 향상을 위한 분자육종에 적용이 가능할 것으로 기대되었다. 유전자원 479점에서 수당립수 증진 유전자 5종의 유전형을 분석하였을 때 총 13개의 haplogype으로 분류되었다. 대부분의 Indica 품종과 Japonica 품종은 haploptype 1과 haplotype 13에 속하였다. 나머지 haplotype에 속한 55점의 유전자원은 수당립수 증진 유전자에 대한 유전다양성을 보유한 자원으로 유전체 분석 등을 위한 핵심집단으로 활용할 수 있을 것으로 판단되었다. 유전자원 396점의 수량구성요소를 비교하였을 때, Nal1을 제외한 4종의 수당립수 증진 유전자의 수량증진 대립유전자형에서 이삭 수가 0.6 ~ 0.8개/주 감소하였으나 수당립수는 이삭당 27 ~ 29개 증진되었다. Nal1 유전자는 유전적 배경에 따라 효과가 다르게 나타나며, Nal1-japonica 대립유전자형의 수당립수 증진 효과보다 Nal1-indica 대립유전자형이 감소효과가 큰 것으로 추측되었다. 앞으로 본 논문에서 검정된 수당립수 증진 분자표지 5종과 유전자원의 유전형을 정보를 바탕으로 벼 수량성 증진 육종에 활용하고자 한다.

Keywords

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741-745 https://doi.org/10.1126/science.1113373
  2. Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin IH, Ishimaru T, Kobayashi N (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA 110:20431-20436. https://doi.org/10.1073/pnas.1310790110
  3. Hu J, Xiao C, He Y (2016) Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice (NY) 9:30 https://doi.org/10.1186/s12284-016-0099-0
  4. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494-497 https://doi.org/10.1038/ng.352
  5. Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J, Nagato Y (2012) ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J 69:168-180 https://doi.org/10.1111/j.1365-313X.2011.04781.x
  6. Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M (2013) Genes offering the potential for designing yield-related traits in rice. Curr Opin Plant Biol 16:213-220 https://doi.org/10.1016/j.pbi.2013.02.002
  7. Kim SR, Ramos J, Ashikari M, Virk PS, Torres EA, Nissila E, Hechanova SL, Mauleon R, Jena KK (2016) Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice (NY) 9:12 https://doi.org/10.1186/s12284-016-0084-7
  8. Lau WC, Rafii MY, Ismail MR, Puteh A, Latif MA, Ramli A (2015) Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Front Plant Sci 6: 832
  9. Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016) Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System. Front Plant Sci 7:377
  10. Lu L, Yan W, Xue W, Shao D, Xing Y (2012) Evolution and association analysis of Ghd7 in rice. PLoS One 7:e34021 https://doi.org/10.1371/journal.pone.0034021
  11. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132 https://doi.org/10.1038/ncomms1132
  12. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C (2008) Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947-1959 https://doi.org/10.1104/pp.108.118778
  13. Rashid MA, Zhao Y, Zhang H, Li J, Li Z (2016) Nucleotide diversity, natural variation, and evolution of Flexible culm-1 and Strong culm-2 lodging resistance genes in rice. Genome 59:473-483 https://doi.org/10.1139/gen-2016-0019
  14. Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652-656 https://doi.org/10.1038/ng.2958
  15. Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3:2149 https://doi.org/10.1038/srep02149
  16. van Ittersum MK, van Bussel LG, Wolf J, Grassini P, van Wart J, Guilpart N, Claessens L, de Groot H, Wiebe K, Mason-D'Croz D, Yang H, Boogaard H, van Oort PA, van Loon MP, Saito K, Adimo O, Adjei-Nsiah S, Agali A, Bala A, Chikowo R, Kaizzi K, Kouressy M, Makoi JH, Ouattara K, Tesfaye K, Cassman KG (2016) Can sub-Saharan Africa feed itself? Proc Natl Acad Sci USA 113:14964-14969 https://doi.org/10.1073/pnas.1610359113
  17. Wang J, Xu H, Li N, Fan F, Wang L, Zhu Y, Li S (2015a) Artificial Selection of Gn1a Plays an Important role in Improving Rice Yields Across Different Ecological Regions. Rice (NY) 8:37 https://doi.org/10.1186/s12284-015-0071-4
  18. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950-954 https://doi.org/10.1038/ng.2327
  19. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015b) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949-954 https://doi.org/10.1038/ng.3352
  20. Xu JL, Wang Y, Zhang F, Wu Y, Zheng TQ, Wang YH, Zhao XQ, Cui YR, Chen K, Zhang Q, Lin HX, Li JY, Li ZK (2015) SS1 (NAL1)- and SS2-Mediated Genetic Networks Underlying Source-Sink and Yield Traits in Rice (Oryza sativa L.). PLoS One 10:e0132060 https://doi.org/10.1371/journal.pone.0132060
  21. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761-767 https://doi.org/10.1038/ng.143
  22. Zhang GH, Li SY, Wang L, Ye WJ, Zeng DL, Rao YC, Peng YL, Hu J, Yang YL, Xu J, Ren DY, Gao ZY, Zhu L, Dong GJ, Hu XM, Yan MX, Guo LB, Li CY, Qian Q (2014) LSCHL4 from Japonica Cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol Plant. 7:1350-1364 https://doi.org/10.1093/mp/ssu055
  23. Zhang J, Zhou X, Yan W, Zhang Z, Lu L, Han Z, Zhao H, Liu H, Song P, Hu Y, Shen G, He Q, Guo S, Gao G, Wang G, Xing Y (2015) Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol. 208:1056-1066 https://doi.org/10.1111/nph.13538
  24. Zhao M, Sun J, Xiao Z, Cheng F, Xu H, Tang L, Chen W, Xu Z, Xu Q (2016) Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the diversity of the panicle trait in high-yielding japonica rice varieties in northern China. Breed Sci 66:599-605 https://doi.org/10.1270/jsbbs.16058